
24-03-01 1

Inheritance
Ch 6

© Dr. B. FraserSlides 11CMPT 213

24-03-01 2

Topics

1) How can Java work with class inheritance?
1) Creating subclasses

2) Overriding methods

3) Flexible Classes

4) Visibility

24-03-01 3

Using Inheritance for Subclasses

24-03-01 4

Android Activities Intro

● An Android Activity
– A screen in an Android app

● Activity class
– Android framework provides an

Activity base class to manage
much of the Activity’s work

– Functions implement default
behaviour for many event such
as pausing, or showing a menu. onPause(): Save data

& stop animations

onResume():
Start animations

24-03-01 5

Inheritance

● Inheritance:

– Ex: MyGameActivity is-an Activity

MyGameActivity inherits from Activity
(subclass) (superclass)
(derived) (base)

● Motivation:
– API & implementation of the base are inherited

by the derived.

– Reuse code from base class in derived class.

– ..

24-03-01 6

Notes on Inheritance

● Instantiating MyGameActivity..

– MyGameActivity object has all members from:

● the Activity class (its superclass), and

● the MyGameActivity class

● Access:
– Subclass may call/access..

of super class.

Ex: MyGameActivity code can call protected and public
functions in Activity.

– Base class cannot access members of derived class.

24-03-01 7

Polymorphism via Class Inheritance

● Polymorphic references can refer to an
object of its class, or any derived class:

Activity a = new MyGameActivity();
a.onCreate();

// Reference to derived class
a = new MySettingsActivity();
a.onCreate();

In Android, you never call onCreate();
the Android Framework does it for you.

24-03-01 8

Overriding Methods

(Not overloading, overriding)

24-03-01 9

super & this

● super: refers to..

● this: refers to current object, not superclass.

24-03-01 10

Overriding

● Subclass can override
a method of superclass if
same signature as base:

– Same name

– Same argument #
and types

public class Fruit {
private String type;

public Fruit(String type) {
this.type = type;

}
public String getType() {

return type;
}

}

public class DeluxeFruit extends Fruit {
public DeluxeFruit(String type) {

super(type);
}

@Override
public String getType() {

return "Deluxe " + super.getType();
}

}

public static void main(String[] args) {
Fruit apple = new Fruit("Apple");
System.out.println(apple.getType());

Fruit deluxe = new DeluxeFruit("Apple");
System.out.println(deluxe.getType());

}
Apple
Deluxe Apple

= DeluxeFruitExample

24-03-01 11

Overriding Details

● To override a method, derived class's method must:
– Have identical signature

– Not throw any extra checked exceptions (more later)

– ..

● Ex: Can go from protected to public, but not public
to protected/private.

– Cannot override a private, a static, or a final method.

– Not change return type of method.

● But you can return a subtype of original return type

24-03-01 12

Base Class Constructor Chaining

● Subclass's constructor can “call” superclass constructor:

● super() must be the..
– If missing, super(); automatically added as first line

(unless using constructor chaining via this(...))

public class SmartPhone extends Phone {
int numGames = 0;

public SmartPhone () {
super();

}
 public SmartPhone (int number, int games) {

super(number);
numGames = games;

}
}

..

..

24-03-01 13

Chaining Constructors

● How does each of these constructors work?

public class Base {
 private int count = 0;

 public Base() {
 this(5);
 // Do anything...
 }

 public Base(int count) {
 this.count = count;
 // Do anything...
 }
}

public class Derived extends Base {
 private final double DEFAULT = 42.0;
 private double other;

 public Derived(int count) {
 this(count, DEFAULT);
 // Do anything...
 }

 public Derived(int count, double other){
 super(count);
 this.other = other;
 // Do anything...
 }
}

= DerivedConstructor

24-03-01 14

class MCHammer {
 final String getSaying() {
 return "Can't touch this!";
 }
}

class MCWho extends MCHammer{
 @Override
 String getSaying() {
 return "Who's MC Hammer?";
 }
}

final vs Overriding

● final method:..

● final class:..

..

24-03-01 15

Shadow Variables - a Bad Idea

● Shadow Variables:
– Subclass declares

a variable of the
same name as the
superclass

● ..
only creates confusion for programmers!

– No good reason to use a shadow variable.

– Pick good, unique names!

class Pet {
private String name;
// ...

}

class PetRock extends Pet {
private String name;
// ...

}

24-03-01 16

Class Hierarchies
and

Flexible Classes

24-03-01 17

Multiple Inheritance

● Single Inheritance:
A class may inherit from..

– Ex: A Car is a Vehicle.

– Java uses this approach.

● Multiple Inheritance:
A class may inherit from many superclasses.

– Ex: A TA is both a Student and a Teacher.

● ..

– Impossible in Java (specifically forbidden).

● Use.. to get some benefits of multiple
inheritance using only single inheritance.

24-03-01 18

Inheritance Hierarchy

WARNING:
Inheritance with concrete classes
is often problematic: inflexible.

24-03-01 19

Flexible Objects

● Once instantiated..

● Design Principle:
Program to an interface, not an implementation

– Flexibility to reference a different concrete class later

● Design Principle:
Prefer composition over inheritance

– Composition allows..
(reference a new object)

– Reduces rigid coupling from static inheritance hierarchy

24-03-01 20

Use Composition Instead

Composition is more flexible.
Can change object an runtime.

Can have multiple duties.

!Code #09: InheritanceHierarchy vs Employee.java

24-03-01 21

Abstract Class

24-03-01 22

Abstract Classes

● Abstract class: (basic idea)

– .. Un-implemented method.
Concrete derived classes must..

– Classes with abstract methods must be abstract.

– Abstract class cannot be instantiated:
it's incomplete; not concrete.

● Make a class abstract:
public abstract class Plant { ... }

● Make a method abstract:
public abstract void doSomethingAmazing();

24-03-01 23

Abstract Class Example
Abstract class...

Abstract method has no
implementation.

draw() and resize() must be..

abstract class GraphicObject {
 int x, y;
 ...
 void moveTo(int newX, int newY) {
 ...
 }
 abstract void draw();
 abstract void resize();
}

class Circle extends GraphicObject {
 @Override
 void draw() {
 ...
 }
 @Override
 void resize() {
 ...
 }
} Example source: Java Tutorial.

..

..

..

24-03-01 24

Abstract Class vs Interface

●

(non-abstract)

●

(non-constant fields)

● Extend classes

● Class can implement..

● In UML, abstract classes shown in italics.
– Sometimes decorated with {abstract}

– Force derived concrete class to..

– Supports constants

Abstract class: Java interfaces:

S
im

il
ar

it
ie

s
D

if
fe

re
n
ce

s

In Java 8, interfaces can
have default (“defender”)

methods, but these can
only call other methods of

the interface.

24-03-01 25

Abstract Questions
● Can a method be both abstract and final?

–

● Can an abstract class have a static method?
–

● Can a method be both abstract and static?
–

● Can a class be both final and abstract?
–

Math is final with a
private constructor.

24-03-01 26

Visibility

24-03-01 27

protected

● protected
– allows..

Crates a “protected” interface.

– unrelated classes cannot access the protected
members.

● Not a great idea:

–

you have no control over which classes extend your
class in the future.

– Create a “protected” interface to expose just those things
that only derived classes will need (“template method”)
Often better to use public interface.

24-03-01 28

Class Member Visibility

● Visibility Modifies and member accessibility:
– public:

– protected:

– default: ..

● default is without any modifiers; called package-private

– private: ..

Inside
Own
Class

Inside
Same
Package

Inside
Inherited
Classes

Rest of
the
world

public Visible Visible Visible Visible

protected Visible Visible Visible

“default”

no modifier

Visible Visible

private Visible

anywhere

in the class, package, and derived classes

24-03-01 29

Summary

● Inheritance (is-a) used to create subclasses
– Supports polymorphism

– Child overrides methods of parents to change behaviour

– Child uses super in constructor

● Composition is more flexible than inheritance

● Visibility modifiers affect inheritance

