
24-02-27 1

Interface Polymorphism

Ch 4.1-4.5

© Dr. B. FraserSlides 10CMPT 213

24-02-27 2

Topics

1) How can we reduce coupling between classes?

2) How can one piece of code work on
different types of objects?

24-02-27 3

Interface

● An Interface specifies a set of public methods,
but..

– It's a contract for providing methods.

public interface LetterGrader {
String getGrade(double percent);
double getMinPercentForGrade(String grade);

}

● "Interface" can refer to two things:
– An interface in Java

(such as "The LetterGrader interface")

– The..
(such as "The class's public interface")

24-02-27 4

Interface Usage
● To implement an

interface, a class
must both:

– Say it
"implements"
the interface

–

public class EasyLetterGrader implements LetterGrader {
 private static final double BREAK_POINT = 70;

 @Override
 public String getGrade(double percent) {
 if (percent >= BREAK_POINT) {
 return "A+";
 } else {
 return "B";
 }
 // Code seems incomplete :)

 }

 @Override
 public double getMinPercentForGrade(String grade) {
 if (grade.compareToIgnoreCase("A+") == 0) {
 return BREAK_POINT;
 } else {
 return 0;
 }
 }
}

@Override is an..

Tells Java that this method..

..

24-02-27 5

Concrete Types

● Concrete Type
–

(not a more general interface or base class).

● Example
– LetterGrader is an Interface (not instantiatable),

so not a concrete type.

– BAD: LetterGrader oops = new LetterGrader();

● Example
– EasyLetterGrader is an instantiatable class,

so..

– GOOD: LetterGrader good = new EasyLetterGrader();

24-02-27 6

Polymorphism
● Polymorphism Example:

– A variable of type LetterGrade can reference any object of class
type which..

● (Subtype) Polymorphism
If S is a subtype of type T, then ..

– The exact method to execute is selected at runtime (late binding).

– Ex: Does g.getGrade() call
EasyLetterGrader.getGrade(), or HardLetterGrader.getGrade() ?

LetterGrader g = new EasyLetterGrader();
computeClassGrades(g);
g = new HardLetterGrader();
computeClassGrades(g);

24-02-27 7

..

..

Polymorphism Example
class MarkingSystem {
 double[] marks = {74, 85, 25, 55, 93, 1};

 void printLetterGrades() {
 LetterGrader grader = new EasyLetterGrader();
 String[] grades = gradeEachStudent(grader);

 for (String grade : grades) {
 System.out.println("Grade: " + grade);
 }
 }

 String[] gradeEachStudent(LetterGrader grader) {
 String[] letterGrades = new String[marks.length];
 for (int i = 0; i < marks.length; i++) {
 letterGrades[i] = grader.getGrade(marks[i]);
 }
 return letterGrades;
 }
}

No idea what type of
LetterGrader is passed;

just that the object..

It can only use..

24-02-27 8

Terminology

24-02-27 9

Why Use Polymorphism?

● ..
Exact method (concrete type) determined at runtime.

● ..
works with any object implementing the Interface so
independent of object's concrete type.

● Design Heuristic:

– Extensible:
Reuse code without
re-write to support
new classes.

24-02-27 10

Types of Polymorphism
● ..

– Function or operator overloading

– Write numerous functions,
..

– Compiler/interpreter picks the function
to call based on the type of arguments.

● ..
– Java’s generics

– Write one general implementation that
..

● ..
– Done using inheritance or interfaces

with method overriding

– The exact method to execute chosen
at runtime (late binding).

int a = 1 + 3;
String b = "hi" + "all";

Object obj = ...;
obj.toString();

class ArrayList<E> {
 void add(E element) {...
 E get(int idx) {...}
}

Static

Static
(not at runtime)

Runtime

void paint(Car c) {...};
void paint(House h){...};
...
Car myCar = ...
paint(myCar);

24-02-27 11

Interface Details

● Interface methods are ..
– can provide “default” implementation of function.

● Can declare.. (automatically public static final)
public interface CardDeck {

int NUM_CARDS = 52;
// ...

}

24-02-27 12

Comparable Review

● Can write algorithms
for interface types.

interface Comparable<Type> {
int compareTo(Type obj);

}

public class InOrder {
public static void main(String[] args) {

Long[] data = new Long[5];
for (int i = 0; i < data.length; i++) {

data[i] = i;
}

System.out.println("In order? "
+ isAscending(data));

}

public static boolean
isAscending(Comparable[] array) {

for(int i = 0; i < array.length - 1; i++) {
Comparable first = array[i];
Comparable second = array[i+1];
if (first.compareTo(second) > 0) {

return false;
}

}
return true;

}

This is not quite perfect.
Comparable is a generic type, so

isAscending() should have the heading

public static <T extends Comparable<T>>
boolean isAscending(T[] array) {

24-02-27 13

Comparator Review

● An idiom is..

● For creating anonymous classes
make a function which creates it.

public interface FileFilter {
boolean accept(File path);

}

private void addFolder(File directory) {
FileFilter filter = createExtensionFilter();
File[] files = directory.listFiles(filter);
//..

}

private FileFilter createExtensionFilter() {
return new FileFilter() {

@Override
public boolean accept(File path) {

return path.isDirectory()
|| hasAcceptedExtension(path);

}
};

}

Example: As2 solution.

24-02-27 14

Using Interfaces

● Interface for Dependencies
– A class may need the

services of another object to
do its job.

– It can..

● Interface for Services Offered
– A class may provide services

to another object.

– It can..

24-02-27 15

Narrow Interfaces

● Prefer using a few small interfaces rather than one big one:

● Design Principle:..
– Prefer small interfaces rather one large one.

– Client code should not be forced to implement methods they
do not need.

– Client code can provide targeted functionality.

24-02-27 16

Review Questions

● Can the full type of an object be just an Interface type?
– No: An object's concrete type cannot be an Interface. An

Interface cannot be instantiated, only implemented by
other classes.

● Are the following two ideas identical?
- A class which has the same methods as an Interface
- A class which implements the interface?

–

24-02-27 17

Interface Details

● An Interface can..
public interface Vehicle {

void turnTo(double direction);
void setSpeed(double speedInKmPerH);

}

public interface FlyingVehicle extends Vehicle {
 void flyToAltitude(double altitudeInM);
}

– A class implementing FlyingVehicle must also
implement all of Vehicle's methods too.

24-02-27 18

Exercise

● Which of the following statements work?
public static void main(String[] args) {
 Vehicle v1;
 v1 = new Vehicle();
 v1 = new Car();
 v1 = new Hoverboard();

 FlyingVehicle v2;
 v2 = new Vehicle();
 v2 = new Car();
 v2 = new Hoverboard();

 Car v3;
 v3 = new Vehicle();
 v3 = new Car();
 v3 = new Hoverboard();
}

24-02-27 19

Summary

● Interface: A set of methods & constants
– How to define, implement, and use an interface

● Concrete Type: the instantiated type of an object

● Polymorphism
– Static (compile time): Ad-hoc and parametric polymorphism

– Runtime: subtype polymorphism

– Example uses

● Interface Segregation Principle
– Define narrow interfaces which provide targeted functionality

