
24-02-25 1

Ch 3.6-3.7

© Dr. B. FraserSlides 09CMPT 213

Programming
by Contract

Defensive
Programming

24-02-25 2

Topics

● What can go wrong with using the following?
double squareRoot(double n) {

... // compute x
return x;

}

● So, why do your classes interact correctly?
Options:

– Magic!

– Your client code agrees to..

– Your classes check all arguments and operations for
correctness

24-02-25 3

Programming by Contract

● Programming by Contract:
Each method and class has a contract.

– Client code..

– Class..

● ..
– What the client ensures

before calling the method.

● ..
– What the class ensures

when method finishes.

● ..
– Properties that must always

be true; often on a class.

/**
 * Returns the real number x,
 * such that x * x = n
 * Precondition:
 * Input n is 0 or greater.
 */
double squareRoot(double n) {

// compute x
..
return x;

}

24-02-25 4

Example

● The method assumes the client enforces the contract
– ..

– Client code's responsibility to ensure contract
preconditions are not violated

/**
 * Removes top element from the stack
 * @pre stack is not empty
 * @post stack is not full,
 * @post top element removed,
 * @post size decreased by one
 */
public void pop(){

elements.remove(0);
}

● Client must be..

Example:
Stack must have an
isEmpty() method.

24-02-25 5

Driving Analogy

● Driving could be a contract:
– Given the preconditions that everyone else obeys

the law, you will be safe.

● Defensive Driving:
– You are never sure what other drivers will do,

so always..

● Example:
– Shoulder check when making a left turn to make

sure nobody is illegally passing you on the left

– Staying out of a car's blind spot to avoid getting hit if
they fail to shoulder check while changing lanes

24-02-25 6

Defensive Programming

● A class is responsible for..

– All input values and actions are checked for
correctness.

ex: prevent adding a duplicate element to a "set"

ex: prevent adding an element to a full array.

● Brian's "Defensive Programming"
– Find bad inputs/actions and..

– How?..

24-02-25 7

Assert Basics

● Assert (basics)
– Usage:

assert condition;

– If the condition is false,..
(throws an AssertionError exception)

● Example Statement:
assert age >= 0;

● Example Method:
public void pop() {

assert !isEmpty();
elements.remove(0);

}

24-02-25 8

Comparison
● Should a square-root method check

that the input is non-negative?
– Design by Contract:..

– Defensive Programming:..
client may call us with a bad value we should check.

● Benefit of Design by Contract
– ..

● otherwise client & class check for valid values.

– Duplicate checks make system more complicated.

● Benefit of Defensive Programming
– ..

– Should use for all calls accessible by untrusted code.

24-02-25 9

Used Together

● Enforcing Design by Contract is hard
– Some languages can automatically enforce the

contract, such as Eiffel.

– Not as easy in many other languages!
If not enforced, then contract violations not caught.

● Complementary Ideas
– Use design by contract to clearly communicate your

expectations to other programmers.

– Use defensive programming to verify these
expectations using asserts and exceptions.

24-02-25 10

Error Handling Options

1. - BAD idea!
–EX: sqrt() w/o any checking or documentation

2. - Programming by contract
–Works best with language support.

–EX: sqrt() w/o any checking, but with documentation

3. (assert) - Check for programmer errors
–EX: sqrt() w/ assert

4.
–EX: sqrt() w/ exception

5. (null, -1, ...)
–EX: sqrt() w/ return -1

6.
–Given incorrect input, try to correct it as best as possible.
Ex: sqrt() w/ abs(x) call to make positive.

24-02-25 11

Asserts:
Enforce constraints on developers.

24-02-25 12

Assertions

● Assert statements
– Trigger a runtime error if a condition is false

– ..

● Example Usage
double rSquared = getCircleArea() / Math.PI;
assert rSquared >= 0;
double r = squareroot(rSquared);

● Assertion failure
– Displays source file & line number via an exception.

Exception in thread "main" java.lang.AssertionError
at ca.sfu.cmpt213.AssertDemo.assertRadius(AssertDemo.java:14)
at ca.sfu.cmpt213.AssertDemo.main(AssertDemo.java:9)

24-02-25 13

Enabling Assertions

● Enabling Assertions
– Turned on/off at

runtime by JVM

– Pass -ea argument
to the JVM

– -ea means..

● In IntelliJ
Run > Edit Configurations
in VM options: add -ea

Demo: assertion failing.

24-02-25 14

Assert User Guide (1)

● Assertions check for..
which should crash the program.

● Guide to using Asserts
– Assert the expectations you place..

● Ex: Calling pop() on a non-empty stack.

– Don't assert things that could reasonably be false.

● Ex: Don't assert a user's input is > 0 because
they may have typed in -1.

● Must check for and handle these errors.

24-02-25 15

Assert User Guide (2)

● Don't assert things that..

String getDescription(Car car) {
assert car != null;
String str = car.toString();
return str;

}

switch(productType) {
case SOFTWARE:

// ...
break;

case HARDWARE:
// ...
break;

default:
assert false;

}

● Use assertions to catch..

If car is null, it will
generate an exception on

it's own.

24-02-25 16

Assert User Guide (3)

● ..

● ..

int age = getUserAge();
if (age < 50) {

// ...
} else if (age >= 50) {

// ...
} else {

assert false;
}

24-02-25 17

Problems with Assert

● Too many asserts can..
– Ex: in a graphics engine for a game.

– Solution: disable them at runtime.

● Too many asserts can..
– Solution: only use where they will help.

● Not for handling errors at runtime
– Ex: Asserts can be disable at runtime; ..

– Solution:

● assert for programmer errors or “invalid” conditions.

● use error handling for "possible" errors (file not found)

24-02-25 18

Summary

● Programming by Contract
– Class states the contract

– Client enforces it meets preconditions.

● Defensive Programming
– Class ensures it's always in a valid state.

– It validates all actions and values.

● Use asserts to validate assumptions
– Check for programmer errors, not “possible” errors.

– Asserts must be enabled in JVM (-ea)

