
24-10-04 1

Generics

© Dr. B. FraserSlides 6CMPT 213

Alexander Grey [Pexels]

24-10-04 2

Generics

● Generic Type Examples
List<Car>

ArrayList<Fruit>

● ..
– Generics give Java code

..

– Code is written once, but handles different types.
Selection is done at compile-time.

● It’s different than Runtime Polymorphism
– .. gives runtime polymorphism

– Code is written once, but handles different types.
Selection is done at run-time.

24-10-04 3

Generics and Different Types

● Generics handle any object type
– Code written with a generic can handle any type of

object, not just ones related via inheritance.

– The same ArrayList code can make:

● an ArrayList of Cars, or

● an ArrayList of Fruit,

● ... etc.

● Once created, an object of type ArrayList<Car> cannot
handle Fruit:

– Compiler knows an ArrayList<Car> object holds Cars

ArrayList<Car> myCars = new ArrayList<>();

Car firstCar = myCars.get(0);

24-10-04 4

Generic Method

● Generic Method
– A method which has a..

– It can use this type parameter as a regular type

● Can call a generic method with any type of object
– Compiler ensures that it preserves the type

 public <T> List<T> makeIntoList(T obj1, T obj2) {
 List<T> myList = new ArrayList<>();
 myList.add(obj1);
 myList.add(obj2);
 return myList;
 }

T is the
type parameter

24-10-04 5

Generic Method Example

public class GenericMethod {

 public static <T> List<T> makeIntoList(T obj1, T obj2){
 List<T> myList = new ArrayList<>();
 myList.add(obj1);
 myList.add(obj2);
 return myList;
 }

 public static void main(String[] args) {

 List<String> myStrings = makeIntoList("Hello", "World");
 List<Integer> myIntegers = makeIntoList(5, 10);

 Car car1 = new Car("Forester", 2050);
 Car car2 = new Car("Model T", 1920);
 List<Car> myCars = makeIntoList(car1, car2);
 }
}

24-10-04 6

Generic Class

● Generic Classes
have a type parameter for the whole class

public class ShippingCrate<T> {
 private T item;

 public ShippingCrate(T item) {
 this.item = item;
 }

 public T getItem() {
 return item;
 }

 public void printLabel() {
 System.out.println("One shipping crate containing: ");
 System.out.println(" " + item.toString());
 }
}

24-10-04 7

Generic Interfaces

● Generic Interfaces
– Like a class, has a type parameter for the whole

interface.

– Very useful to make flexible code

// Create an object that, given an item,
// provides the description you want.
public interface Describer<T> {
 String getDescription(T item);
}

● Can use
..
for client code to provide
an implementation which
fills in a part of our
algorithm.

● Our object is then typed
to the type the client
needs.

! OnlineBatchAuction.java

24-10-04 8

Arrays and Generics

(Covariant vs Invariant Types)
(Reified vs Type Erasure)

24-10-04 9

Arrays and Generics Don’t Play Well

● ..

● Why?
– Java’s type system guarantees that when using generics

Java will not throw a runtime cast exceptions.

– If you have a collection of TeddyBears, get() must
always gives you a teddy bear! ... but it’s complicated...
List<TeddyBear> bears = new ArrayList<>();
TeddyBear myBear = bears.get(0);

Bad

OK

24-10-04 10

Understanding Covariant

● Let A be a subtype of B.

● Variance refers to if a language allows an array (or list) of A
to be used instead of an array (or list) of B

● Java arrays are covariant:
– ..

● You can write code
to use B[], and
instead pass it A[]!

public class ArrayCovariant {
 static int countLength(Object[] data) {
 return data.length;
 }

 public static void main(String[] args) {
 String[] strings = {"Broken", "Type"};
 Object[] objects = strings;
 System.out.println(countLength(strings));
 System.out.println(countLength(objects));
 }
}

Object[] data = new Long[10]; Variance:
Some languages allow
this; others do not.

24-10-04 11

Understanding Covariant (cont)

● With covariant types, must..
– Since it will accept a different type, it’s possible to write code

that violates the type system.

– objects is of type Object[], which is a subtype of String[]

– objects[] is of type Object[], so compiler lets us put in an Integer

– But, the array only stores String, so must runtime check!

public class ArrayCovariant {

 public static void main(String[] args) {
 String[] strings = {"Broken", "Type"};
 Object[] objects = strings; // OK; Covariant!

// Generates runtime exception: ArrayStoreException
objects[0] = 5;

}
}

24-10-04 12

Understanding Invariant

● Generics (such as lists) are invariant:
– ..

– If you need a List, you cannot use List<A> instead.

● Compile time checking of types!

24-10-04 13

Covariant vs Invariant Types

● Covariant seems more flexible; is it better?
– ..

– With covariant types, we need to do runtime type
checking.

– With invariant types, the compile does all our checking!

● Heuristic:
..

– Advice given in Effective Java (3rd ed) by Joshua Bloch

// With covariant arrays, this is a _runtime_ error
Object[] objectArray = new Long[1];
objectArray[0] = "I don't fit in!"; // Runtime error

// With invariant generics, this is a _compile time_ error
List<Object> objectList = new ArrayList<Long>(); // Compile time error!
objectList.add("I don't fit in!");

24-10-04 14

Type Erasure

● Java generics only know about their type parameters at
compile time.

– ..

– Since the type system is strong for generics, the compile
is able to enforce all type constraints so that we don’t
need to check at runtime.

● Reification
– ..

arrays know and enforce their element types at runtime.

– ..
generics do not enforce their element types at runtime.

24-10-04 15

Summary

● Inheritance
– Provides run-time polymorphism

● Generic
– Provides compile-time polymorghism

– Generic methods
Written once, work on any (specific) type of object

– Generic class
Handle any (specific) type of object

– Generic interface
Provides flexible ability to the strategy pattern

● Arrays are covariant types (reified);
Generics are invariant types (type-erasure).

