
23-01-19 1

OOD Process
Ch 2.1 – 2.5

© Dr. B. FraserSlides 03CMPT 213

23-01-19 2

Topics

1) What phases are used to create software?

2) How can we identify and design classes?

3) How can classes work with other classes?

23-01-19 3

Terminology

● OOP:..
– Object-Oriented building blocks like fields, methods,

inheritance, encapsulation, polymorphism, etc.

● OOD:..
– Applying design principles to construct an object-

oriented system which meets the needs of the user
in a flexible and maintainable way.

● Domain:
..

– Ex: Scheduling, accounting, vehicle control.

– Encounter domain specific terminology.
Ex: Bank, Pack, Battery, Module, Cell

23-01-19 4

Basic Software Creation Phases

23-01-19 5

Basic Software Creation Phases

● Phases / Activities
1) Requirements
2) Design
 & Implementation
3) Verification
4) Evolution

– Done during any software development process
such as Waterfall or Agile.

● Evolution
– Change is inevitable for software.

– OOD works well with software change because
..

23-01-19 6

Requirements Gathering

● Goal
Create a robust description of..

– Describes "what" not "how" (how is implementation).

● Agile or Plan Driven
– May be a backlog of user stories:

descriptions of tasks that the user needs to do

– May be a functional specification:
completely describe the features

● Software Developers must take a “spec” and then:
– Design the system

– Implement a working system

23-01-19 7

OO Design

● Goal: Identification of..

● OOD Process
– An iterative process of discovery and refinement.

● Product(s)
– of classes & relationships

– Text description of classes

● Time consuming, but a good design..

– "The sooner you start, the longer it takes"

23-01-19 8

OO Design – Challenges

Design is... [1]

● ..

– You need a good design to..

– You need to implement the system to know if..

● Sloppy: make many..
– But cheaper during design than implementation!

● Heuristic Process
– , vs fixed process

– Use trial and error, analysis, refinement.

[1]: Code Complete 2, McConnell, 2004

23-01-19 9

Implementation

● Goal
Program, test, and deploy the software product.

● Process Options
– Skeleton Code: Implement..

of full system first, then flush out code.

– Component Wise:
Implement one class/component at a time

● Integration
– Continual Integration: Gradual growth of the system by

continually integrating changes.

– build parts separately, then..

(Fraught with peril!)

23-01-19 10

Class Design

23-01-19 11

Object & Class Concepts

● Object: A software entity with state, behaviours to
operate on the state, and unique identity.

● State:..
– Ex: pizza's size, car's colour, triangle's area

● Behaviour: The methods or operations it supports
for..

– Not all possible operations supported.
Ex: Pizza's don't support squaring their diameter.

● Identity: Able to..
– Ex: same data, same operations, different copy.

● Class: .. of a set of objects with same
behaviours and set of possible states.

23-01-19 12

Identifying Classes

Given a problem specification, how to find classes?

1. Classes are often the..

– Class names are..
Ex: Customer, SerialNumber, ProductDefect

– Avoid redundant "object" in names.

– Some nouns may be properties of other objects.

2. Utility classes: stacks, queues, trees, etc.
– Ex: MessageQueue, CallStack, DecisionTree

When customers call to report a product's defect,
the user must record: product serial number, the
defect description, and defect severity.

23-01-19 13

Identifying Classes (cont)

3. Other possible classes
– Agents:..

● Name often.. Ex: Scanner

– Events & transactions: Ex: MouseEvent, KeyPress

– Users & roles: Model the user.
Ex: Administrator, Cashier, Accountant

– Systems: Sub systems, or the..

– System interfaces/devices: Interact with the OS.
Ex: File

– Foundational Classes:..
Use these without modelling them.

23-01-19 14

The Evils of String

● Don't over use string!
– ..

(such as a name).

– Strings are problematic to compare and store.
Example: Spot the differences

“CMPT 213” “cmpt 213” “CMPT213” “CMPT 213 ”

– Even if going from string data (ex: text file)
to string data (ex: screen output),
..

– Suggestion: Create classes or enums like
Department, Course, or Model

23-01-19 15

Enum Aside

● Imagine you are printing student names on paper.
How to select horizontal vs vertical layout?

● (Poor) idea for setting direction
public const int HORIZONTAL = 0;
public const int VERTICAL = 1;

– May have other constants:
public const int NUM_PINK_ELEPHANTS = 0;

● Use with functions
public void printPage(int pageDirection);

– The following generates..
printPage(NUM_PINK_ELEPHANTS);

23-01-19 16

Enum Aside

● Enums are better..

– Compiler enforces correct type checking
public void printPage(Direction pageDirection);

Call it with:
printPage(Direction.HORIZONTAL);

– Incorrect argument type generates error
printPage(NUM_PINK_ELEPHANTS); // Compiler error

23-01-19 17

Identifying Responsibilities

● Responsibilities (methods):
Look for verbs in the problem description.

– Assign each responsibility to..

– Easy Example: Set the car's colour
myCar.setColour()

– Harder Example: Police comparing licence plates

● daCar.comparePlate(plate2)?

● daPolice.comparePlate(plate1, plate2)?

● daPlateComparator.compare(plate1, plate2)?

23-01-19 18

Identifying Responsibilities (cont)

● Responsibility Heuristic:

● Example:
Adding a Page to a 3-ring Binder.

– myPage.addToBinder(daBinder);

Must get access inside the Binder.

– daBinder.addPage(myPage);

Does not need..

23-01-19 19

Identifying Responsibilities (cont)

● Functionality often in the wrong class
– Ask yourself:

“How can this object perform its functionality?”

– ..

● A “code smell” where a class uses methods of
another class excessively.

● Warning sign:
If a method..

– Solution: Move it to that other class.

23-01-19 20

Relationships between Classes

23-01-19 21

Class Relations Overview

● Dependency
– Where a class “uses” another class.

– Ex: Any of our programs using System.

● Aggregation
– Where a class “has-a” object of another class in it.

– Ex: Car has-an Engine.

● Inheritance
– Where a class “is-a” sub-category of another class.

– Ex: Eagle is-a Bird.

23-01-19 22

“Use” (Dependency)
● Dependency:

Class X depends on class Y if..

– Ex: Changing Y's class name or methods.

– If X knows of Y's existence, then..

● Coupling: Two classes are coupled if..

– Coupling makes it harder to change a system because..

– A design goal: Reduce coupling.

● Ex: Which has lower coupling?
public String getName() {

return name;
}

public void printName() {
System.out.println(name);

}

23-01-19 23

“Has” (Aggregation)

● Aggregation: When an object..

– Usually through the object's fields.

● Aggregation a special case of Dependency:
– If you have an object of type X, you must

use (depend on) class X.

● Multiplicity:

● Foundational classes (String, Date, ...) are..

class Person {
private Car myCar;

}

class Album {
private List<Song> songs;

}

23-01-19 24

"Is" (Inheritance)

● Class X inherits from class Y if..

– X has at least the same behaviours (or more),
and a richer state.

– Y is the.. (base class)

– X is the.. (derived class)

● Example
– Car inherits from Vehicle.

● Heuristic
– Use dependency (or aggregation) over inheritance

when possible.

23-01-19 25

Summary

● Terminology: OOD, OOP, Domain

● Phases: Requirements, Design & implementation,
Validation, Evolution

● Class Design: Object vs Class
– Identifying classes via nouns.

– Identifying behaviours via verbs.

● Class Relationships:
– Dependency: uses, i.e., knows it exists.

– Aggregation: has-a, usually through fields.

– Inheritance: is-a

