
Assignment 5: Course Planner CMPT 213 with Dr. Brian

Assignment 5: Course Planner
This assignment may be done individually or in pairs. Do not show other students your code, do
not copy code found online (like GitHub), do not reuse solutions from previous semesters or
courses or assignments, do not post questions about the assignment online, and do not get an AI
(evil or otherwise) to write or eat your assignment. Please direct all questions to the instructor or
TAs.

You may use ideas (short code snippets, tutorials, documentation...) you find online and from
others, but your solution must be your own. You may not copy code from solutions on GitHub
(or other places).

See the marking guide for details on how each part will be marked.

1. Introduction
Create a Spring Boot server which helps students plan their courses. Specifically, it will show students
when a course has been offered in the past which may help predict when it will be offered in the future.
You will be writing the server which will use a REST interface to support a web-based UI (web UI can
be downloaded from the course website).

The server will read a locally stored CSV input file containing data about course offerings at SFU. It
will then process the data to organize it into a well structured model. The server’s controllers will
provide access to this data via a REST API.

The project is divided into two parts, each may have its own due date (see website):

1.1 Part 1:
1. Model reads in data from a provided CSV file.
2. A simple Spring Boot controller can trigger the model to print out the model in a well-

structured way to the local terminal (i.e., the server’s terminal, not over HTTP back to the
calling user).

1.2 Part 2:
Add the following features:

1. Support REST API required by the provided web front-end.
2. For a given department, generate data of how many students took classes in that department

each semester.
3. REST API interface to add more class offerings, and an ability to record changes made to a

specific course (i.e., track what sections have been added to the course).

Generated Mar 26, 2024, 01:06 PM Page 1/7 © Brian Fraser

Assignment 5: Course Planner CMPT 213 with Dr. Brian

2. Part 1 Requirements
Your part 1 submission must meet the following requirements.

2.1 Data Input Requirements
1. Create a folder in your project name data/ (at the same level as src/; not inside it).

2. Copy the provided course_data_2018.csv file into data/.

3. The file is a comma-separated text file with the following columns:

1. SEMESTER
The semester number of the offering.
- The first three digits refer to the year.
- The last digit is the semester: 1=Spring, 4=Summer, 7=Fall. You need handle only these
three semester (i.e., you will not be tested with a semester number 5).

2. SUBJECT
The department. Will be a short string.

3. CATALOGNUMBER
The course “number”. May be a number like 213, or a string like 105W or 1XX.

4. LOCATION
The campus:
- Campuses of interest: BURNABY, SURREY, HRBRCNTR.
- Other locations: OFF, KIT, KAM, WML, …. (anything else).

5. ENROLEMENTCAPACITY
The enrollment cap for the section (i.e., maximum number of seats)

6. ENROLMENTTOTAL
The enrollment total for the section (i.e., the number of people who took that section).

7. INSTRUCTORS
The instructor(s) which taught that section of the course. Comma separated if more than
one. If instructor is “(null)” or “<null>” then set instructor to “” (empty string).

8. COMPONENTCODE
The type of section as a short string such as LEC, TUT, SEC, OPL, ...

4. At startup, your program must be hard-coded (using a named constant) to load the
“data/course_data_2018.csv” file. Note, do not hard-code the full path to this file. This
must be a relative path such as “data/file.csv”; do not use the full path like “C:/xyz/myprj/...”.

1. Your application will only be tested with well formed input files, such as the one provided.
We may test with alternative contents, such as different subjects, courses, locations, years,
and section types.

2. You may not use a 3rd party CSV file reader.

3. If the file is not found, or there was an error reading the file or its contents, have the
program exit. It is fine to exit due to an uncaught exception, or with a specific error
message.

Generated Mar 26, 2024, 01:06 PM Page 2/7 © Brian Fraser

Assignment 5: Course Planner CMPT 213 with Dr. Brian

2.2 Required Controller Features
Have a GET /api/dump-model end-point which triggers your application to dump out a summary of
the model to the server’s terminal. Note that this output is to the server’s terminal, not in the client’s
terminal: the data is not being returned via HTTP, just printed.
Model dump format

◦ Course number
◦ Per {semester, location} of that course, display:

▪ The semester (SFU semester number), location, and instructor(s).
▪ Section type (such as LEC, LAB, …)
▪ Enrollment for each section-type: the number of students enrolled and total capacity.

Add together instances of a specific section-type within an offering. For example, add up
the enrollment and capacity of all labs for a specific course offering.

For example, consider the following lines of the input file:

Figure 1: Sample lines in the input data file.

When processed, this generates the following two offerings (Burnaby and Surrey).

CMPT 250
1147 in BURNABY by Anthony Dixon

Type=LAB, Enrollment=129/130
Type=LEC, Enrollment=129/130

1147 in SURREY by Brian Fraser, . Faculty
Type=LAB, Enrollment=81/82
Type=LEC, Enrollment=81/82

Text 1: Course offering and section information for the lines of data shown in Figure 1.

◦ The data in the file may not seem to make sense. There could be more people in lecture than
lab, there could be sections with 0 capacity, or 0 enrolled, or 9999. This is OK: just process the
numbers as though they are valid numbers.

◦ Assume there is at most one offering of each course at each campus during a single
semester. Therefore aggregate all lectures, all tutorials, etc for a single course/campus
pair. For example, group together all CMPT 120 information for Burnaby during the summer
of 2000, even if there were actually two CMPT 120 sections in Burnaby that semester.

◦ When combining two sections, only list each instructor once even if there is some or total
overlap between the sections. For example, if the first section has two instructors "A, B" and 2nd

section has instructor "B", then only list each of A and B once in the combined entry.

Generated Mar 26, 2024, 01:06 PM Page 3/7 © Brian Fraser

Assignment 5: Course Planner CMPT 213 with Dr. Brian

3. Part 2 Requirements
Add a REST API to your program to allow the web front-end to access your program.

3.1 Curl Commands
A file of curl commands is provided on the course website which shows the features your back-
end system must implement.

Note that a number of endpoints require an ID to access a course/offering/etc. You may need
to edit the curl commands and change the IDs for the department, course, and offering as these
are specific to a given implementation and your IDs will very likely differ from mine, even
though we are loading the identical CSV data file.

You should not change the REST API, as it is the interface between your server and the provided
webclient front end.
Sample output is also provided for when the script is run on the latest data.
See course website for a Postman configuration file as well.

3.2 UI
A fully-functional web front-end is provided on the course website. It is designed to connect to
the REST API detailed in the API document.

See course website for a video showing the features of the UI when fulling working.
The provided front-end should be extracted into a new public/ folder inside your project (at the
root of your project). Once extracted you should be able to run your program and browse to
http://localhost:8080 to access the UI.
It is expected that you should not need to modify the UI: Once you implement the required REST
API end-points functionality of the UI will function.
Hint: Don’t use the MakeSpringPrettyPrintJSON.java file (if you have one): it messes up
serving the public/ folder (causes a “Whitelabel Error Page” to show); delete the file if present.

4. Coding Requirements
Your program must:

1. Follow the course's code style guide.

2. Separate the controllers from the model.

3. Modularity and class design

◦ You must have well design classes.

◦ Use multiple classes in your model to store the system's information. You must have at least
5 or more model classes (or even 10+).

4. Your program must not search through the entire data-set for each request from the front-end
(i.e., each request to your server’s endpoints). If you were do search the whole data set for each
request then processing all the data each time makes the model too slow.

◦ Instead, process the data set into meaningful collections of objects, and then access these
objects without having to search all records for each endpoint request. For example, when
loading the data set, process it into courses, and then selecting a course can quickly load the
required information.

◦ You may not use a database to store data.

Generated Mar 26, 2024, 01:06 PM Page 4/7 © Brian Fraser

Assignment 5: Course Planner CMPT 213 with Dr. Brian

5. Hints
The following hints may be useful as you create your application. These are not requirements, so you
need not follow them. Please see the marking guide for exactly what is being marked.

5.1 Model Design
1. Start by designing the data storage classes.

◦ Identify classes by analyzing input data-file format, and needs of the UI.
◦ Do CRC cards for your classes.

2. Develop the API (i.e., method calls) the model needs to support to implement the REST API.
◦ Consider using the facade pattern to expose a single model interface from the model.

3. Think about low level classes you could use. For example, would having a Semester class
allow you to encapsulate some logic about converting a string (“1037”) into a Semester? What
about a class which can encapsulate reading a CSV file without any knowledge of the meaning
of the data?

5.2 General tips
1. Be very careful using ==. Most of the time you'll need .equals()!
2. Use asserts, and check that they are turned on! (Temporarily add an “assert false;” to test).
3. Considering overriding equals() for most of your data classes. This can be very useful when

you are searching a list of items to see if it's already in the list.

5.3 Model debug output
◦ The /api/dump-model end-

point displays the entire data
set to the console. Use this
to check that your read-in
and data-processing routines
are working. Required
output format shown to
right.

◦ Note: You should carefully
review the output to ensure
your model is functioning.

Generated Mar 26, 2024, 01:06 PM Page 5/7 © Brian Fraser

CMPT 106
1107 in SURREY by Harinder Khangura

Type=LEC, Enrollment=29/32
Type=TUT, Enrollment=29/32

1117 in SURREY by Harinder Khangura
Type=LEC, Enrollment=30/35
Type=TUT, Enrollment=30/35

1131 in SURREY by Harinder Khangura
Type=LAB, Enrollment=57/61
Type=LEC, Enrollment=57/61

1137 in SURREY by Harinder Khangura
Type=LAB, Enrollment=66/191
Type=LEC, Enrollment=66/192

1147 in SURREY by Harinder Khangura
Type=LAB, Enrollment=43/50
Type=LEC, Enrollment=43/50

1157 in SURREY by Harinder Khangura
Type=LAB, Enrollment=52/52
Type=LEC, Enrollment=52/52

1167 in SURREY by Harinder Khangura
Type=LAB, Enrollment=52/72
Type=LEC, Enrollment=52/55

1177 in SURREY by Harinder Khangura
Type=LAB, Enrollment=48/48
Type=LEC, Enrollment=48/48

Assignment 5: Course Planner CMPT 213 with Dr. Brian

5.4 REST API Hints
• If you have extra getters on your object that you don’t want to appear in the JSON, add

@JsonIgnore above the getter method. This is especially useful if the getter returns a reference
to another object, which may then reference other objects, …. etc.

• If your object structure differs from what the REST API wants, you can:
◦ Add data transfer objects (DTOs), like we used for assignment 4.
◦ Or add getter methods to your object to compute/return the necessary data.

For example, if your CourseOffering object references a Semester object, but you need
the JSON to list the course offering’s year then add a getYear() method to
CourseOffering which delegates getting the year to its contained Semester object.

Suggested Development Steps
• Create a new Spring Boot project.
• Add web UI to your project.
• Suggested order of pages to get working:

◦ About
◦ Browse (index.html)
◦ Watchers
◦ Graph (optional/bonus)

• Use Postman or curl commands to exercise each API endpoint independently.
◦ Change the ID values in the Postman file or curl script to match the values your system

produces.
◦ Execute the commands, one at a time, to test the end-points.
◦ Compare your results to the sample output. Data in arrays should be in sorted order, as

needed by the UI.
• Open the developer console in your browser when working with the web UI.

◦ For example, F12 in Chrome.
◦ Switch to the “Console” tab (or the like) to see error messages. Install Vue addon.

Generated Mar 26, 2024, 01:06 PM Page 6/7 © Brian Fraser

Assignment 5: Course Planner CMPT 213 with Dr. Brian

6. Deliverables
Submit each iteration to CourSys: https://coursys.sfu.ca
You must create a group in CourSys (even if you worked individually). Submit one solution per group.

6.1 Part 1 Submission: Dump Model
This is a proof of progress milestone. It shows you have some of the model implemented (parsing data,
building a meaningful internal representation). Submit the following:

1. output_dump.txt
◦ A text file of the complete output generated by GET /api/dump-model via your REST API

after it read in and processed the provided input CSV file.
◦ This should be the output from the course_data_2018.csv input file.
◦ Format should be similar to format shown above.
◦ To capture the full output, IntelliJ’s console’s history must be expanded:

▪ Preferences/Settings > Editor > General > Console
▪ Check “Override console cycle buffer size”
▪ Change number to 5000 KB

2. Zip file of project

6.2 Part 2 Submission: Complete
Full ZIP file of project submitted.

• No screen-shots or sample outputs are required.
• Must include the web UI (either as provided by the instructor, on modified by you as needed).

Please remember that all submissions will be compared for unexpected similarities.

Generated Mar 26, 2024, 01:06 PM Page 7/7 © Brian Fraser

https://coursys.sfu.ca/

	1. Introduction
	1.1 Part 1:
	1.2 Part 2:

	2. Part 1 Requirements
	2.1 Data Input Requirements
	2.2 Required Controller Features

	3. Part 2 Requirements
	3.1 Curl Commands
	3.2 UI

	4. Coding Requirements
	5. Hints
	5.1 Model Design
	5.2 General tips
	5.3 Model debug output
	5.4 REST API Hints
	Suggested Development Steps

	6. Deliverables
	6.1 Part 1 Submission: Dump Model
	6.2 Part 2 Submission: Complete

