Assignment 5: REST API - Rev 1 CMPT 213 with Brian Fraser

Assignment 5: REST API

1. General

+ All ID’s (like “5” in the endpoint examples below) are assigned by the back-end and are
implementation specific. Therefore, its OK if your IDs are different than appear here, in the
curl/Postman queries, or the sample output. The UI will work with whatever IDs you pass it.

All commands return HTTP 200 (OK) unless otherwise stated.

¥ Any endpoint which accepts an ID (be it in the path, query string, or in the body) must return an
HTTP 404 error with a meaningful message if the ID does not exist.

¥ Most arrays must be in sorted order so that the UI displays values in correct order.

¥ See website for provided data transfer objects (DTOs) for REST API to exchange with frontend.

GET /api/about
¥ Return a simple structure of some description of your app (you choose!) and your name.
GET /api/dump-model
Trigger the model dump to the server’s console. If you are running the server via IntelliJ, then

you’ll see the output inside the IntelliJ console.
¥ No content is returned to the client; this just outputs the debug information to the terminal.

2. Access Departments, Courses, Offerings, and Sections

GET /api/departments
¥ List of all departments.
¥ Each department has an ID (dept1d) and a name (name).

GET /api/departments/5/courses
¥ Lists all courses for department with dept1d 5.
¥ Each course has an ID (courseId) and a number (catalogNumber).
4 Note that the course number can be more than just an integer (such as 105W, or 2XX)

GET /api/departments/5/courses/123/offerings

Lists the offerings of the course with course1d 123 inside department with dept1d 5.

Each course offering has:

d courseofferingId: The ID of this offering; assigned by the back-end.

location: String describing where the course is offered, such as “SURREY”
instructors: String representing the names of the instructors who teach the offering.
year: Integer value for the year, such as 2018.
semesterCode: Integer value for the SFU semester code, such as 1187
d term: String describing the semester of the year, such as “Fall”.

GET /api/departments/5/courses/123/offerings/4321
Return the list of sections for the offering with courseofferingrd 4321, in the course with
courseId 123, in the department with dept1d 5.
4 For example, an offering in Surrey of CMPT 130 may have lecture and tutorial “sections”.
¥ Each section expected to have:
d type: String describing the section type (comes from data file).
enrollmentTotal: Integer holding the total number of students enrolled in this section.
4 enrollmentcap: Integer holding the capacity of the section.

EkEE

Generated Nov 18, 2024, 12:21 AM Page 1/3 Dr. Fraser ©

Assignment 5: REST API - Rev 1 CMPT 213 with Brian Fraser

3. Graph Data - Bonus

GET /api/stats/students-per-semester?deptId=5
¥ Returns a list of data points showing how many spaces in courses were filled by students during
each semester for the selected department.
4 Return one data point for each semester between the start and end of your data (see below).
4 Each returned data point is for a single semester and stores the total number of seats taken by
students in lecture (“LEC”) sections for courses in the given department during that semester.
4 Calculate this value for a given semester by:
» Find the set of course offerings in the selected department for each semester of interest.
» Then sum up the enrollmentTotal values for all “LEC” type sections of those offerings.
¥ Returned data expected to be an array of objects:
semesterCode: The SFU semester code.
d totalCoursesTaken: The total number of filled seats in all courses offered by the selected
department during that semester.
¥ The semestercode must start at the first semester for which your system is given data, and must
go up to the last semester for which you have data.
4 Use only the semesters 1 (Spring), 4 (Summer), and 7 (Fall).
4 Do not skip over a semester if there is no data for that semester: include it in the data set.
4 Array must be sorted by semestercode (i.e., in chronological order).

4. Add New Offering / Section

POST /api/addoffering
Add a new section to the data stored by the system.
This mimics the behaviour of dynamically adding data that could have been found as a row in
the input data file.
Returns HTTP 201: Created.
¥ POST message has the following fields:
d semester: The SFU semester code, such as 1181.
subjectName: The department name, such as “CMPT”
catalogNumber: The course number, such as 213 for CMPT 213.
location: String representing the location, such as “SURREY”.
enrollmentCap: Total number of filled seats in the class (number of students).
component: The component or section code, such as “LEC” or “TUT”.
enrollmentTotal: Total number of seats in the class.
d instructor: String for the instructor’s name.
Note that when data is added to the model the Web UI will not automatically refresh; user must
manually reload the current page to have the data update.
¥ Adding a new section via this endpoint can add new offerings, courses, and even departments to
the system.
TIP: Do not repeat yourself! You already have code to do this task when you read data from the
CSV file; reuse that same code.

Ok kE EER

Generated Nov 18, 2024, 12:21 AM Page 2/3 Dr. Fraser ©

Assignment 5: REST API - Rev 1 CMPT 213 with Brian Fraser

5. Course Change Watchers

GET /api/watchers
¥ Lists all change-watchers.
4 A course change watcher (“watcher”) is stored on the server and allows the user to “watch” a
specific course for sections being added.
4 When created the change-watcher registers as an observer with the desired course.
When the course knows that it is changed (in response to reading a new row from the CSV
file, or from data dynamically added via the API) it notifies the watcher.
4 The watcher maintains a list of descriptions of sections (i.e. components) being added to a
course.
¥ Each watcher object returned by this endpoint has:
4 id: Watcher’s ID, as assigned by the back-end.
department: JSON object for the department of the course being watched. Expected sub-
fields are deptId and name.
course: JSON object for the course being watched. Expected sub-fields are course1d and
catalogNumber.
4 events: Array of strings, showing the history of events it has observed.
» Expected format of each event should be similar to the template:
[date]: Added section [type] with enrollment ([total]/[cap]) to offering [term] [year]

» For example:
Sun Mar 25 21:41:35 PDT 2018: Added section LEC with enrollment (89 / 90)
to offering Spring 2019

> [total] and [cap] should be the new amount added by this change, rather than the total
number. i.e., if you are adding an extra tutorial holding 23 students with a cap of 30 to an
existing set of tutorials for a course offering, the event should show (23/30), not the much
greater total of all tutorials for this section.

POST /api/watchers
Create a new watcher.
¥ Returns HTTP 201: Created.
¥+ Request body contents:
dept1d: ID of the department in which the course is found.
d courser1d: ID of the course which is to be watched.

GET /api/watchers/42
¥+ Get the list of events recorded by the watcher with ID 42.
¥ See GET /api/watchers section above for fields.
(This is returning just one watched, /api/watchers returns an array of all watchers).

DELETE /api/watchers/42
Delete the watcher with ID 42.
¥ Returns HTTP 204: No content.

Generated Nov 18, 2024, 12:21 AM Page 3/3 Dr. Fraser ©

	1. General
	GET /api/about
	GET /api/dump-model

	2. Access Departments, Courses, Offerings, and Sections
	GET /api/departments
	GET /api/departments/5/courses
	GET /api/departments/5/courses/123/offerings
	GET /api/departments/5/courses/123/offerings/4321

	3. Graph Data - Bonus
	GET /api/stats/students-per-semester?deptId=5

	4. Add New Offering / Section
	POST /api/addoffering

	5. Course Change Watchers
	GET /api/watchers
	POST /api/watchers
	GET /api/watchers/42
	DELETE /api/watchers/42

