
Assignment 3: Maze Game CMPT 213 with Brian Fraser

Assignment 3: Maze Game

Submit deliverables to CourSys.
This assignment is expected to be completed in pairs (you may complete it individually, but
that is not recommended). Doing OOD in a team setting is great practice.
Do not help other students by showing them your code; do not copy code found online.

You may use ideas you find online (such as programming questions on StackOverflow) and
from others, but your solution must be your own (not copied from GitHub).
You may receive help from AI tools, but your solution must be your own not copied from it.
You must cite any AI help you use.

See the marking guide for details on how each part will be marked.

1. Game Description
Create a maze exploration game where the player controls a mouse in search of some pieces of cheese
to win the game. However, there are some blind cats in the maze who will eat the mouse if possible.
Whenever the player reaches the square with cheese in it, the mouse (player) automatically collects the
cheese and another cheese appears somewhere in the maze. If a cat and mouse (player) ever occupy the
same square, the player loses the game. But, since the cats are blind, they cannot track the mouse: cats
move pseudo-randomly.

The player sees the maze from a top-down view. At the beginning of the game, the maze is hidden
from the player, but as the player moves through the maze, squares adjacent to the player are revealed
in all 8 directions.

To the right is a sample display of the maze showing the walls (#),
the mouse (@), the cats (!) and the cheese ($), plus unexplored
spaces (.). See the course website for sample captures of the game
output.

Generated Oct 11, 2024, 01:19 AM Page 1/6 Dr. Fraser ©

Maze:
####################
#..............#
..............#
.............#
#@# #..........!..#
!............#
#.............#
.............#
#................$.#
#..................#
#..................#
#..................#
#...............!..#
#..................#
####################
Cheese collected: 1 of 5
Enter your move [WASD?]:

Assignment 3: Maze Game CMPT 213 with Brian Fraser

1.1 Game play requirements
When playing the game, the following requirements must be met:

Maze must..
be 20 cells wide, and 15 cells tall.
have a wall all the way around the edge. This leaves 18 x 13 cells inside the outer wall.
be randomly generated using a maze generation algorithm, such as the ones listed on
Wikipedia. Your code must have a comment, or use class/method naming which makes it
clear which algorithm is being used. You must not copy code for generating a maze; you are
to implement the algorithm yourself.
adapt the maze generated by your chosen algorithm with the following added requirements:

It must not have a wall in each of the four corners where the player and cats will be placed.
(This is inside the outer wall which surrounds the maze)
Remove some of the inner walls of the maze to add cycles (loops) to the maze. (Otherwise,
it is very hard for the player to navigate the maze while still avoiding cats). This means that
there will not be just one path through the maze, but multiple possible paths.
All open (non-wall) cells in the maze must be connected, otherwise if the cheese is placed
in a non-connected cell the game is unwinnable.
2x2 square constraints:

There must not be a 2x2 square of open cells. Such an area would appear as a room in
the maze, and makes the game less challenging.
There must not be a 2x2 square of inner-wall cells. This restriction does not apply to any
outer wall cells. For example, it’s OK to have a 2x2 square of wall cells where two of
them are outer walls.
For example, the two grids on the left, which show only an inner part of the maze, are
not allowed (the problematic regions are highlighted), but the one on the right is fine.

#

#

#

#

#

#

#

#

#

#

#

#

Hint: Generate the maze which has no cycles using an algorithm of your choice. Then,
randomly remove some of the inner walls of the maze ensuring that you don’t make an
open 2x2 square. You must play-test your own maze generation algorithm and tweak this to
make it work.
Hint: For some of these constraints, like no 2x2 square of walls, it may be easier to
randomly generate a new maze if your initial generation fails to meet the requirements.

Game Elements:
The player (mouse) starts in the top left corner.
Cats start in each of the three remaining corners.
A piece of cheese is randomly placed on the board. The cheese cannot be put into a cell
occupied by a wall or by the player (but by a cat is OK).

Generated Oct 11, 2024, 01:19 AM Page 2/6 Dr. Fraser ©

http://en.wikipedia.org/wiki/Maze_generation_algorithm

Assignment 3: Maze Game CMPT 213 with Brian Fraser

Cats wander the maze pseduo-randomly. They may occupy the same square as other cats, or
the cheese; they do not eat the cheese. If they occupy the same cell as a player then the player
loses the game. (If the player moves into the cat's square, or the cat moves into the player's
square, the player loses).
Cats must wander the maze and try not to immediately backtrack their steps. They need not
map out the maze and never backtrack; they should just not double back on themselves
immediately unless there are no other moves. Cats cannot walk through walls.

The cats should not be “smart” enough to track the player: they are blind (and have no
sense of smell or hearing...).

Text User Interface:
The outside wall of the maze must be visible to the player at the start of the game.
The player can always see where the cats and cheese are, even if they are in a not yet revealed
cell.
See the sample output for the symbols you must use for displaying the maze and game
elements to the user.

Game Play:
The user is shown the current state of the game, including their position, cat positions, and
cheese position in maze. They also see all parts of the maze they have revealed.
The user enters a move using one of the W (up), A (left), S (down), D (right) keys.

Invalid keys generate an error message and force the user to re-enter their move.
User input must be case insensitive ('W' or 'w' is OK).
You may assume that the user enters only a single character when entering a move, or you
may read in a whole line/string and just process the first character. Anything is OK.
Use System.in to read in user key strokes. The user will have to press enter after each key.

The user may type '?' to reveal the help that is shown at the start of the program.
Hidden keys (cheat codes)

'm' key displays the entire map. This will be used during marking to evaluate the maze
generation algorithm (we have a program to validate your maze meets the above
constraints). You may either have this reveal the entire maze for the rest of the game, or
just display the full maze once.
‘c’ key sets the number of cheese required to win the game to 1. This will be used for
marking to evaluate wining the game. You may assume that this cheat code will only be
used before the first cheese is captured.

The user wins when they have collected 5 cheese (unless the user has used the cheese cheat
code; in which case it’s 1 cheese!).
The user loses when they are in the same square as a cat.

The user loses if they move into a cell currently occupied by the cat. (User may have been
thinking that the cat would move out and allow the mouse to come in; this is not true: the
cat eats the mouse!)
The user loses if the cat steps into the cell which the mouse (user) occupies.
The user loses if they move into a cell that contains a cat, even if the cell also contains the
final piece of cheese they needed. (i.e., if they lose when they die).

When the game finishes (win or lose), the user must be shown the entire game board (reveal
all cells).

Generated Oct 11, 2024, 01:19 AM Page 3/6 Dr. Fraser ©

Assignment 3: Maze Game CMPT 213 with Brian Fraser

1.2 Implementation/Design Constraints
The game is to use a text interface for display, and the keyboard for input.
The game's OOD must be good:

You must have two packages: One package for the UI related class(es); another package for
the model related classes (actual game logic).

Imagine that you want to have not only a text game, but also a web version. You should be
able to reuse the entire model (game logic) in a completely different UI.
This means that the model should not print anything to System.out; instead, have it expose
methods to get the required information, and code in the UI package displays it.
Your model must work in problem domain concepts, such as cat/cheese/mouse/... instead of
working in terms of the UI characters #, @, $, etc.

Each class is responsible for one thing.
Each class demonstrates correct encapsulation.
Consider use of immutable classes where applicable.
Respect the command/query separation guideline when appropriate.
You must use at least 3 streams in your code.

Implementation must follow the style guide (on course website). Specifically important are:
Good class, method, field, and variable names.
Correct use of named constants.
Good class-level comments (comment on the purpose of each class).
Clear logic.
Correct indentation and spacing.
No deeply nested logic: move deeply nested functionality into sub classes or other methods.

Generated Oct 11, 2024, 01:19 AM Page 4/6 Dr. Fraser ©

Assignment 3: Maze Game CMPT 213 with Brian Fraser

2. Tasks

2.1 Design
Complete the following steps to create an object oriented design for this application. You should be
doing this with a partner and engaging in a collaborative design process1. For submitting these design
files, first create an IntelliJ project, and then right-click on it in the Project view and select New -->
Directory, and name it docs.

1. CRC Cards
- Create CRC cards to come up with an initial object oriented design.
- Do not submit the actual cards, but once you have settled on a design, you must type up the
information stored on the CRC cards, take a picture of the cards, or submit a digital version of
the work.
- Each card must show the class name, responsibilities, and collaborators. Submit this as
a .txt, .pdf, or .jpg file named CRC.TXT (or .PDF,...)2 in the docs/ folder. If you take a picture,
ensure that the text is clear, and that the image is less than 1MB.

2. UML Class Diagram
- Create an electronic UML class diagram for your OO design.
- The diagram should not be a complete specification of the system, but rather contain only
enough information to express the important details of your design.
- Your diagram must include the major classes, all class relationships, and a few key methods or
fields that explain how the classes will support their responsibilities.
- You must use a computer tool to create the diagram. You may not generate the diagram
directly from your Java code. Suggested UML tool: Violet UML Editor (free), Draw.io, or
Visio.
- Submit your UML diagram as a PDF or image file named CLASSDIAGRAM.PDF (or .PNG,
or .JPG, …) in the docs/ folder.

3. Explain how our OOD will work
- Pick two interesting (non-trivial) actions/steps that the game must support and explain how
your OOD supports this.
- For example, explain how the board will be drawn, or how the user's move is handled.
- Imagine that you are presenting your design to your team and persuading them it's the best
design. Your explanation here could be part of how you'd show that.
- Describe this in a .txt or .pdf file named OODEXPLAINED.TXT (or .PDF) in the docs/ folder.

1 You and your partner should work together on coming up with a design.
2 In reality, you would likely not be saving the CRC cards; however, since it's worth marks, you must submit something!

Generated Oct 11, 2024, 01:19 AM Page 5/6 Dr. Fraser ©

https://app.diagrams.net/
http://alexdp.free.fr/violetumleditor/page.php

Assignment 3: Maze Game CMPT 213 with Brian Fraser

2.2 Implementation
Implement the game in Java.
You must start with your OOD from your design, but you may modify the design as needed. You
need not update your OOD documents to reflect your final design.
Source Control:

If you’d like to develop using GIT, you can use SFU’s GitLab:
https://csil-git1.cs.surrey.sfu.ca/
(Do not use GitHub unless you keep your projects closed source; do not share your code
publicly during the course; however, you may post it after the course is over).

Hint: When running your program, try running it from IntelliJ’s terminal vs the “run” menu: the
screen may re-draw faster making the text-based game more playable.

3. Deliverables
Submit a ZIP file of your IntelliJ project to CourSys. This file should include:

1. docs/CRC.TXT (or .PDF, or JPG); Keep images small!
2. docs/CLASSDIAGRAM.PDF (or PNG, or .JPG)
3. docs/OODEXPLAINED.TXT (or .PDF)
4. All your code!

To submit, create a group in CourSys and invite your partner. Only one person per group need submit.

May be done individually. Still need to create a group, but just for you.

Please remember that all submissions will automatically be compared for unexplainable similarities.

Generated Oct 11, 2024, 01:19 AM Page 6/6 Dr. Fraser ©

https://csil-git1.cs.surrey.sfu.ca/

	1. Game Description
	1.1 Game play requirements
	1.2 Implementation/Design Constraints

	2. Tasks
	2.1 Design
	2.2 Implementation

	3. Deliverables

