
25-04-02 1

Cryptography
Applications

© Dr. B. FraserSlides 12.2CMPT 201

25-04-02 2

Topics

● How can we safely store passwords?

● How do we verify a document is authentic?

● How can we trust websites?

25-04-02 3

Storing Passwords

25-04-02 4

Storing Passwords

● Password verification systems don't store plain text passwords
– ..

– Adds security: attacker getting a copy of the password file
gives them the hash which cannot be used to log in.

– To check a password, system checks
..

● Linux stores passwords in /etc/shadow (accessible by root)

pwdis_1234:yj9T$LirzYIOxlHbbu6Wi/9zCl.$I9AZk5jAaY0uRPQfPnTEu.x5UeMVROrhP.i9gI96DD7:20159:0:99999:7:::
pwdis_1235:yj9T$Rnadt7C63/7Bl1s/3Gx8v0$fvKI5ljHrj2hhnIhb6SkvjPvDQb7Awb3wUKU5YNmKK.:20159:0:99999:7:::
pwdis_abcd:yj9T$/TAaIyA61/lpbWM0vB5wA1$jofzhQHkwXjtpqfZ6cXIEwepD1L1V75gNriCM5C3pS7:20159:0:99999:7:::

User
name

Hash alg.
y=yescript

Salt Password
expiry info

Hash

25-04-02 5

Rainbow Table Attack

● Rainbow table attack
– ..

– Can then quickly search password file of hashes for known
passwords.

● Defence: Salt the password.
– Salt: ..

– Store salt and hash(user-password || salt)
(|| means concatenation)

– Verify password:
..

● Attacker cannot reasonably compute hash of all possible
passwords along with all possible salts.

25-04-02 6

Verifying Documents

25-04-02 7

Secure digest

● Secure digest for summary of document
– Often used to verify a downloaded file is not corrupted.

– A secure digest is a summary of a message:
..

– Typically produced by a cryptographic hash function
e.g., SHA-256.

● Example

$ sha256sum ./README.md
e293cdc4f5c4686772fba8159be9e9636654fed7ce72bfd2e75add8a6833c5ab ./README.md

25-04-02 8

Digital Signature

● Digital signatures combine public key crypto and hashing.
– Goal: ..

– The message can be public;
we just want to prove who sent it and that it's unaltered.

● Two parties: signer and verifier.
– The Signer:

● Sends a message

● Wants to prove they sent the message.

– The Verifier:

● Receives message

● Wants to verify the message was
sent by the signer and is unaltered.

25-04-02 9

Signer

● The Signer will:
– Writes a document: m

– Computes a message digest: h(m) (e.g., using SHA-256)

● Not good enough yet: Adversary could write document z,
computes h(z) and plant both on the server.

– ..
(e.g., using RSA public key crypto)

● This is called signing.

● Only the signer has the private key,
so only the signer can encode with it.

– Sends the message & the signature:
<m, enc(h(m))>

25-04-02 10

Verifier

● The Verifier will:
– Receives the message and the signature:

<m, enc(h(m))>

– Decrypts the signature with..
dec(enc(h(m))) == h(m)

– Computes a message digest: h(m). Let's call it h'.

– ..

● If yes, then the message is authentic.

● Since only signer knows their private key,
..
then they must have signed the document.

25-04-02 11

Trusting Unknown Companies

25-04-02 12

Digital Certificate

● Digital certificates use digital signatures.

● Scenario
– Imagine sending password to website (e.g., Instagram).

– You encrypt your password with Instagram's public key.

– Only Instagram can decrypt the message, so password is safe.

● Questions
– ..

– One way:
Instagram sends you their public key when you first go site.

– How do you know if the public key really belongs to Instagram?
But a rogue website could disguise as Instagram and send you a
wrong key.

25-04-02 13

Secure Browsing

● HTTP has no encryption.

● HTTPS uses encryption:
– Instagram sends you its public key in a digital certificate.

– Digital Certificate:
..

– Your OS verifies the authenticity of the digital certificate.
OS has some built-in..

– Your browser then uses Instagram's public key to encrypt
messages to Instagram.

● Only Instagram can decrypt messages encrypted with their
public key.

25-04-02 14

Digital Cert Operation

● How digital certificates work:
– A digital certificate is signed by a digital certificate authority

● E.g., VeriSign, DigiCert

– OS vendor ships OS with public keys for some trusted digital
certificate authorities like DigiCert.

● This establishes the base level of trust:
..

25-04-02 15

Digital Certificate Example

● Instagram uses DigiCert:
– Instagram goes to DigiCert,

gives its public key, and
requests a digital certificate.

● DigiCert creates a digital
certificate:

– It says "this public key
belongs to Instagram"

– ..

25-04-02 16

Digital Certificate Example (cont)

● Instagram Digital Certificate
– When browser connects to Instagram,

Instagram sends the digital certificate.

● Browser uses its trusted public key for DigiCert to
verify the digital certificate from Instagram.

– If your OS is not compromised, this whole process is secure
based on the first level of trust.

● If the OS is compromised, there is no 1st level of trust
and this whole process is not secure.

● Encryption Use
– ..

(public key is slow and generates lots of data)

– Rest of communication..
(faster, smaller)

25-04-02 17

Chain of Trust

● Digital certificates rely on the chain of trust
– To trust the public key sent by Instagram,

we need to trust DigiCert's signature.

– To trust DigiCert's signature,
we need to trust DigiCert's public key.

– In order to trust DigiCert's public key (shipped with OS),
we need to trust that our OS is not compromised.

● Chain of trust relies on the root of trust being trustworthy.
– Our root of trust is the OS.

25-04-02 18

Activity: SSH

● [Opt] Spin up new container: docker run -it ghcr.io/sfu-cmpt-201/base

● Generate public/private key with ed25519 & passphrase
$ ssh-keygen -t ed25519 -C "your email address"

– Look at files in ~./ssh

● SSH SFU
– ssh <yourID>@csil-cpu01.csil.sfu.ca -p24

Asks user name & password; use VPN if off campus.

● SSH Keys
– SSH SFU; manually add pub key to end of ~/.ssh/authorized_keys

– Log-out, log-in (asks passphrase)

● SSH Agent: Avoids passphrase; Stores key in memory.
eval ssh-agent
ssh-add

kill $SSH_AGENT_PID

Servers: https://www.sfu.ca/fas/computing/support/csil/remote-acces

25-04-02 19

Hash Collisions

25-04-02 20

Birthday Match = Hash Collision

● Birthday Match
– In a class of 30 people, probability of two students having the

same birthday is..
https://en.wikipedia.org/wiki/Birthday_attack

● Hash Collisions
– Given enough messages,

..

– i.e., can we show that a hash function
..

● (Recall) Strong collision resistance:
It should be difficult to find two messages x and x'
where h(x) == h(x').

– i.e., given a hash function, it should be difficult to find two
values that produce the same hash.

25-04-02 21

Birthday Attack

● Attacker use a contract the customer is expected to sign
(say agreement to buy company for $100,000).

● Attacker then:
– ..

(adding a space, adding commas, adding typos, ...)

– Creates malicious altered copies (sale price $100,000,000)

– Goal: ..

– Customer given benign copy to sign using their private key and
hash of document.

– Attacker then..

– Since the contracts have same hash, attacker can claim customer
signed malicious contract using their private key!

25-04-02 22

Demo: Hash Collision

● Demo: Collision in Crypto Hash Functions
– MD5 was a widely used crypto hash function

but was found to be insecure by 2005.

– No longer in use.

● Get images & Compare Hashes
$ wget https://s3-eu-west-1.amazonaws.com/md5collisions/ship.jpg
$ wget https://s3-eu-west-1.amazonaws.com/md5collisions/plane.jpg
$ openssl dgst -md5 ship.jpg
$ openssl dgst -md5 plane.jpg

– Algorithm exists to manipulate a pair of images into having the
same MD5 hash.

● SHA255 is not yet known to be insecure.
$ openssl dgst -sha256 ship.jpg
$ openssl dgst -sha256 plane.jpg

https://natmchugh.blogspot.com/2015/02/create-your-own-md5-collisions.html

25-04-02 23

ABCD: Birthday

● A birthday attack is successful when attackers find:

a) Two images that look the same but have different binary data.

b) Two students in CMPT 201 who have the same birthday.

c) A second document which matches the hash of a single given
document.

d) Hash collision of a benign and malicious document.

25-04-02 24

Summary

● Passwords
– Store salted and hashed passwords to avoid rainbow tables.

● Digest
– A hash of a document.

● Digital Signatures
– Sign a hash with a private key.

● Digital Certificates
– Sign document to show who really owns a public/private key.

– Chain of trust for distributing certificates.

– Root of trust built into OS.

● Hash Collisions
– Duplicate hash (digital signature) is a security issue.

– Birthday attack to find duplicates.

