Cryptography Algorithms

© Dr. B. Fraser

Slides 12.1

CN

Topics

- What is cryptography?
- What are the basics of cryptographic algorithms?
 - What are cryptographic hashes?
 - What is a secret key encryption?
 - What is public-key encryption?

Cryptography: The absolute basics

Context

Cryptography

- A very broad area.
- We'll focus on how to <u>use</u> cryptography.
- We just touch on the basics!

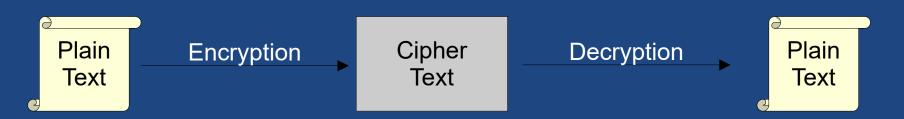
The CIA Model

- CIA model: the classic security model.
 - Confidentiality:

••

- Integrity:

and only by authorized parties.


- Availability:
 - ••

• Threat examples

- Against confidentiality:
- Against integrity:
- Against availability:

classified information leak fake images/videos Denial-of-Service (DoS) attacks

General Cryptography Process

- Cryptographers invented secret codes to hide messages from unauthorized observers.
- Challenges:
 - How can you hide a message from everyone but the intended recipient?
 - How can the recipient know the message is authentic?

ABCD: Traditional Cryptography

• Traditional Cryptography:

- Secret codes, which are secret algorithms.
- E.g., Caesar Cipher: ...

For +1 'A' becomes 'B'.

 ABCD: Which of the following is the cipher text from using a 3-letter shift Caesar Cipher on the plain text "Hello world"? a) EBIIL TLOIAb) KHOOR ZRUOGc) IFMMP XPSMEd) LOWOR LDHEL

What is the problem with a secret algorithm?
 When your algorithm (or code book) is compromised,

• •

Modern Encryption

- Algorithms are Public
 - ..

. .

- May be symmetric (secret key) or asymmetric (public key).
- Why is this better?
 - If algorithm or code is secret, then if it falls into the wrong hands it means code is useless.
 - If only key is private, then if it falls into the wrong hands then

Crypto Algorithm Goals

- Choose an encryption algorithm such that:
 - Given a key, it should be
 - Without a key, it should be

•••

 Strength of security often based on length of key: Longer key is more difficult to guess (by brute-force).

Window of Validity

• Window of Validity

- Must only use algorithm that have not been compromised.

• Problem:

•••

Window of validity of your crypto function

- Design systems so you can replace the crypto function easily.
- Example Windows of Validity
 - 1993: SHA-0 was published.
 - 1995: Possible weakness was found in the SHA-0 algorithm; replaced with SHA-1.
 - 2004: Published way to compromise SHA-0
 - 2017: Published way to compromise SHA-1
 - ????: Published way to compromise SHA-256?

25-03-31

Three Types

- Types of cryptography algorithms based on their keys:
 - Zero keys: ..
 - One key: ..
 - Two keys: ..

Cryptographic Hash Functions (Zero Keys)

Cryptographic Hash Functions

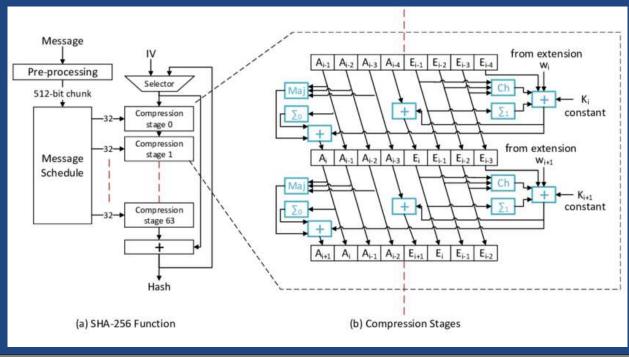
- Suppose we have a cryptographic hash function *h()*
 - It takes a message *m* of arbitrary length as input and
- Toy example:
 h(m) = (m²) % 4321

• •

m	m in hex		h(m)
AAAA	(0x41414141)	>	2242
BBBB	(0x42424242)	>	893
0000	(0x43434343)	>	2558
DDDD	(0x4444444)	>	2916
EEEE	(0x45454545)	>	1967
FFFF	(0x46464646)	>	4032
GGGG	(0x47474747)	>	469
НННН	(0x48484848)	>	4241
IIII	(0x49494949)	>	2385
JJJJ	(0x4A4A4A4A)	>	3543
KKKK	(0x4B4B4B4B)	>	3394
LLLL	(0x4C4C4C4C)	>	1938

Hash Function Properties

- It should be easy to compute *h(m)*
- Given h(x), it should be difficult to find x.
- i.e., the reverse of *h()* should be difficult to compute.
- Given x, it should be difficult to find x' where h(x') == h(x)
- i.e., Given a value and a hash function, it should be difficult to find another value that produces the same hash.
- It should be difficult to find
 two messages x and x' where h(x) == h(x')
- i.e., given a hash function, it should be difficult to find two values that produce the same hash.

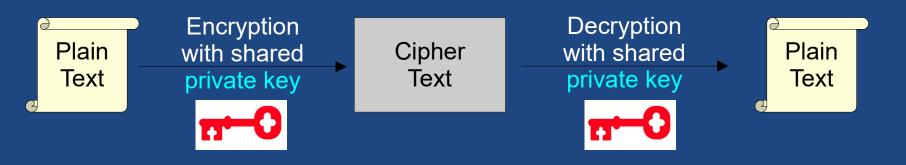

25-03-31

•

•

Ideal Hash

- Ideally, we want all these properties
 - for a strong cryptographic hash function.
 - However, not all hash functions provide all these properties.
- Example good crypto hash function: SHA-256.



25-03-31

https://www.researchgate.net/figure/SHA-256-algorithm-block-diagram-a-SHA-256-execution-flow-including-the-preprocessing fig3 371457507

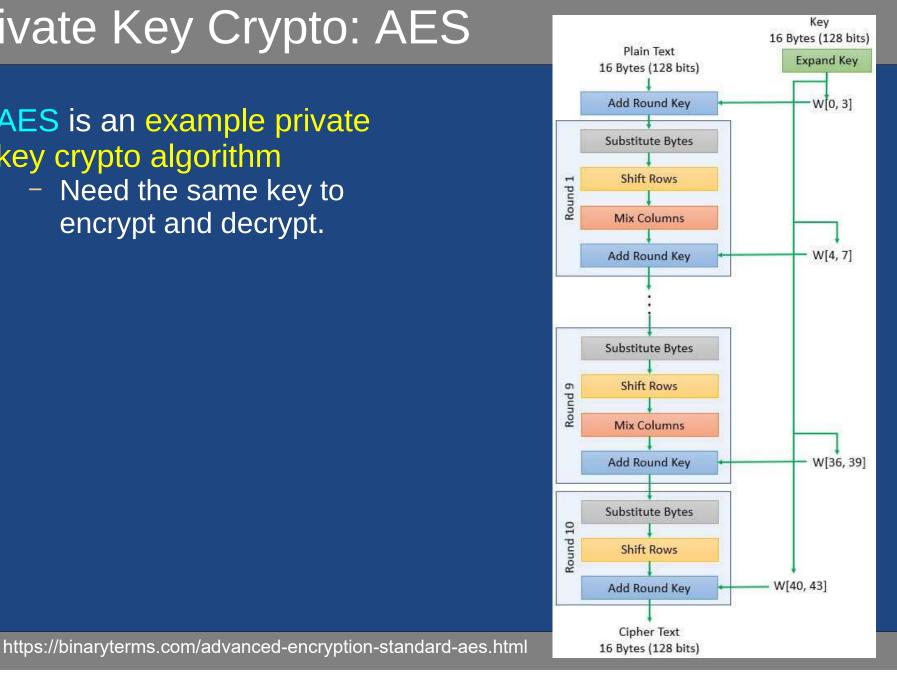
Private Key Cryptography or Symetric Key Cryptography (One key)

Private (Symmetric) Key Crypto

• One key:

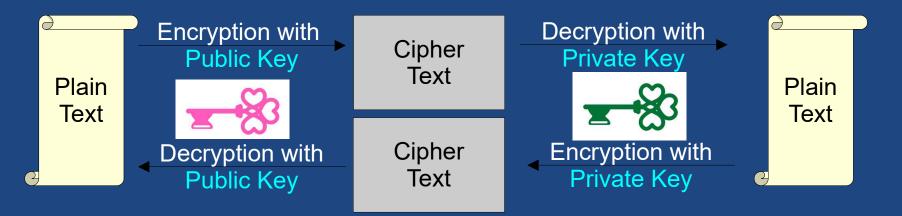
. .

• •


 This was the only type of encryption prior to invention of public-key in 1970's.

Private Key Crypto: AES

• AES is an example private key crypto algorithm


25-03-31

- Need the same key to encrypt and decrypt.

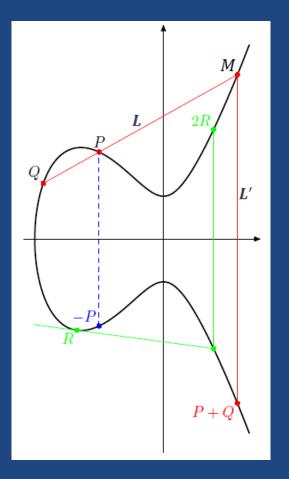
Public Key Crypto or Asymmetric Crypto (Two keys)

Public Key Crypto (Asymmetric)

- There are two keys:
 - Public key: can be known to anybody
 - Used to encrypt and verify signatures (more below).
 - Private key: ..

. .

- Used to decrypt and sign signatures (more below).
- Fundamental property of public key encryption:


Generating Keys

• Generating keys:

. .

- The public and private keys are

- Example approaches to generating keys
 - Factoring very large prime numbers,
 - Solving "Twisted Edwards curves" (ed25519)

25-03-31

https://www.researchgate.net/figure/Elliptic-Curve-Addition_fig1_284494383 21

Keeping Secrets

Example: Keeping Secrets

- Alice wants to send a secret message to Bob
- ..
- Bob decrypts the cipher-text using his private key

Analysis

- Since only Bob knows Bob's private key, only Bob can decrypt the cipher-text.
- Hence Alice and Bob can securely share the message.

Verifying Sender

- Example: Verifying Sender
 - Bob wants Alice to know that he sent a messages and it has not been altered.
 - ..
 - Alice decrypts the cipher-text using Bob's public key.
- Analysis

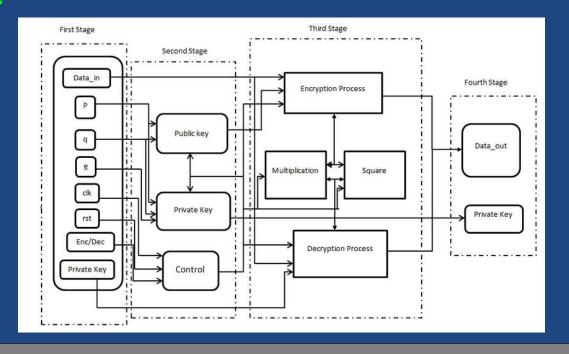
. .

- Since only Bob knows Bob's private key,
- Alice knows it was Bob who created the message.

Secret and Verified

Example: Secret and Verified

- Combine previous two examples.
- Alice wants to send a verified, secret message.
 - Anyone can decrypt it with her public key.
 - But only she can encypt with it; so we know she sent it!
 - Only Bob can decrypt it with his private key.
- Analysis


.

 Only Bob can decrypt the message (using his private key), and he'll know that only Alice can create it (using her private key).

Public Key

• Benefit:

- This does not require having
- Lots of other use cases beyond encryption / decryption
- Example algorithm: RSA.

https://www.researchgate.net/figure/RSA-Algorithm-Process_fig3_282249995 25

25-03-31

Summary

- Cryptography
 - From plain text, create cipher text that others cannot read or change.
- Types of algorithms
 - 0 Keys: Hash function
 - 1 Key: Symmetric encryption (private-key)
 - Both sides know the same secret key.
 - 2 Keys: Asymmetric encryption (public-key)
 - You share a public key with the world.
 - Anyone can encrypt messages for you using this key.
 - Only you can decrypt messages using your secret private key which matches the public key.