
25-03-24 1

Inter-Process Communication:
Pipes

Inter-Process Communication:
Pipes

© Dr. B. FraserSlides 11.1CMPT 201

25-03-24 2

Topics

● How can two processes send data between themselves?
– What if they are parent-child?

– What if they are unrelated?

– What if we want to send full messages, not just bytes?

25-03-24 3

IPC

● Inter-process communication (IPC)
..

– E.g., UNIX domain socket is an example of this,

● Other facilities:
– pipes,

– FIFOs,

– message queues,

– memory mapping, and shared memory.

25-03-24 4

Pipes

25-03-24 5

Pipe Usage

● We've used shell pipes:
ps aux | grep bash

– | is a pipe.

– The output of the first becomes input to the second.

● Can use pipes programmatically:
int pipe(int filedes[2])

● man 7 pipe

– ..

● filedes[0] gives us the..

● filedes[1] gives us the..

25-03-24 6

Pipe Details

● A pipe has the following characteristics:
– ..

– It is unidirectional:
..

– ..

● A pipe creates file descriptors, so use regular file I/O:
– non-buffered I/O:

● read(), write()

– buffered I/O:

● fprintf(), fscanf()).

25-03-24 7

Parent-Child Communication

● A typical use case:
– ..

● Fork copies file descriptors
– Both file descriptors (filedes[0] and filedes[1]) available in both

parent and child because..

– Parent parent and child can use pipe to communicate.

● Question: How could we encapsulate this in a module?

25-03-24 8

Point 1: Different Ends

● Important point 1:
– ..

(So each process closes end they don't use)

● E.g., child could write to pipe and parent read from pipe.
– Parent closes write end: close(filedes[1])

– Child closes read end: close(filedes[0])

– Child writes into pipe and parent reads from it.

● Take a look at the example from man pipe.

25-03-24 9

Point 2: Buffer Size

● Important Point 2: Pipe buffer size
– ..

● When calling write() with n bytes:
if n <= PIPE_BUF, ..

if n > PIPE_BUF, ..

(other writes maybe interleaved between parts of this write).

– Details depend on if it's a non-blocking pipe; see man 7 pipe

– PIPE_BUF == 4096 on Linux.

25-03-24 10

Point 3: Close all write()

● Important Point 3:
..

– This can be used as a signaling mechanism.

● An example scenario:
– A parent creates pipe and calls fork()

– Parent process closes write FD and read()s.

– Child process closes read FD and write()s its data.

– Data is exchanged via the pipe

– ..

– Once parent has read all data in the pipe's buffer,
read() returns 0.

● Parent then knows child has closed write end.

25-03-24 11

Duplicating File Pipes

int dup2(int oldfd, int newfd)

● Can redirect another program's input/output to pipes.
– dup2() system call

..

● E.g., Redirect standard output to the write end of the pipe:
dup2(filedes[1], STDOUT_FILENO);

– ..

● E.g., Redirect a pipe to the standard input.
dup2(filedes[0], STDIN_FILENO);

– Any reads from STDIN are instead read from the read end of
the pipe.

25-03-24 12

Running a Program with Pipes

FILE *popen(const char *command, const char *mode)

It does three things to conveniently run a command:
– ..

– if mode == "r":
returns a file stream which is connected to the STDOUT of the
command.

– if mode == "w":
returns a file stream which is connected to the STDIN of the
command

● Use pclose() to close.

25-03-24 13

Activity: Pipe to child and back

● Activity:
modify the example in man pipe as follows:

– The parent should send a string to the child.

– The child should send the string back to the parent
in upper-case

– The parent should print out the received string.

25-03-24 14

FIFOs

25-03-24 15

FIFO between unrelated processes

● Two or more..
(parent, child, grandchild)

– However, unrelated processes can't share a pipe.

– Instead, they can share a FIFO to communicate with each
other.

● ..
int mkfifo(const char *pathname, mode_t mode)

● pathname is the name of the FIFO to be created.

● mode is the permission, same as open().

– Similar to UNIX domain sockets as it creates a file.

– Use unlink() to remove a FIFO, just like a file.

25-03-24 16

Opening a FIFO

● Process only needs to know the FIFO's pathname:
unrelated processes can share a FIFO.

– One process creates FIFO with mkfifo()

– Any processes can use open(), read(), write(), etc. to access.

● A FIFO is still unidirectional and typically for two processes:
– One process should open it for read and other for write.

– open() blocks until the other process calls open() as well.

25-03-24 17

FIFO Activity

● Activity: write two programs:
– One program should create a FIFO and read a string from it

and print it out

– The other program should write a string to the FIFO and print
it out.

25-03-24 18

POSIX Message Queues

25-03-24 19

Message Queue

● Message Queue
– similar to a FIFO, but

..

a message is..

– man 7 mq_overview

● 5 important functions.
– mq_open()

– mq_send()

– mq_receive()

– mq_close(), and

– mq_unlink()

25-03-24 20

Message Queue: mq_send()

int mq_send(mqd_t mqdes,
const char *msg_ptr, size_t msg_len,
unsigned int msg_prio);

– Message queue sends structured data using a pointer
(msg_ptr) to the structured data.

– msg_prio determines a priority of the message.

– The queue is a priority queue,
i.e.,..
(and FIFO for the same priority).

● mq_receive() retrieves the oldest highest priority message
– Gets the whole message at once,

..

25-03-24 21

Summary

● Inter-process communication (IPC):
– Pipes: Send data between two related processes

– FIFO: Send data between unrelated processes

– Message Queue: Send full messages

