
25-03-16 1

Networking
Sockets

© Dr. B. FraserSlides 10.1CMPT 201

25-03-16 2

Topics

● How does software do something complicated
like networking? Layers!

● What are the two types of sockets?

● What syscalls can we use to work with sockets?

25-03-16 3

Networking

● Programs can communicate with each other via a network.
– Can be across a network (wifi, wired, ...)

– Can be on the same computer!

● More Resources
– Beej's Guide to Network Programming

https://beej.us/guide/bgnet/ is popular.

– The Linux Programming Interface (our recommended text)
is also great.

25-03-16 4

Basics of the Networking Stack

25-03-16 5

Networking Stack

● Stack
– ..

– Each layer provides a service to the layer
above it.

Phy

Link (MAC)

IP

Transport

Application

25-03-16 6

Physical Layer

● Phy (Physical) Layer:
..
generates and receives signals.

– Need to know how to
physically send and receive data.

– Focuses on voltage and signalling.

● Analogy:
Amazon package delivery:
..

Phy

Link (MAC)

IP

Transport

Application

25-03-16 7

Link Layer

● Link (MAC) Layer:
..

– This is only for a (small area) local network.

– E.g., wired or wireless local network.

– LAN = Local Area Network

● Link layer has MAC addresses for addressing.
– MAC =..

MAC address look like: 05:35:5a:30:f9:05

● Analogy: Amazon package delivery:
– need an address and routes

(how to get there).

Phy

Link (MAC)

IP

Transport

Application

25-03-16 8

IP (Network) Layer

● IP ("Network") Layer:
..

– IP =.. Internet Protocol

● What if you want to connect a wired local
network with a wireless local network?

– Still need addressing and routing but it needs
to be something common for both wired and
wireless.

● ..
– IP addresses look like: 192.168.7.53

Phy

Link (MAC)

IP

Transport

Application

25-03-16 9

Transport Layer

● Transport Layer:
..

● Imagine sending/receiving lots of packages:
3 problems can occur:

– ..
Think car crash; or human errors like losing a
package in a warehouse.

– ..
They may be delivered by different trucks via
different routes.

– ..
If the sender mistakenly thinks the package is
lost and re-sends.Phy

Link (MAC)

IP

Transport

Application

25-03-16 10

Transport Layer (cont)

● Some applications require an in-order reliable
byte stream.

● Need a way to control these things:
– ..

provides protection against these things:
..

– ..
does not provide any protection!
Raw datagrams = packets.

● Port Number
– Use a socket port number to identify

..
to send a packet

– E.g., port 80, or 443

Phy

Link (MAC)

IP

Transport

Application

25-03-16 11

Application Layer

● Application Layer:
..

– Often features a well-known protocol such as:
HTTP and FTP.

Phy

Link (MAC)

IP

Transport

Application

25-03-16 12

ABCD Spot the Address

● Which of the following is ___________?
1) an IP Address

2) a MAC Address

3) Port Number

a) 8001

b) 19:02:16:08:07:01

c) 153.10.23.103

d) 0xF532 5E85 0005 235F

25-03-16 13

Socket Interface

25-03-16 14

Socket Syscalls

● An application can use a socket to communicate with another
process (local or remote)

● There are five key syscalls
– socket()

– bind()

– listen()

– accept()

– connect()

25-03-16 15

socket()

int socket(int domain, int type, int protocol)
– ..

– Functions to send/receive

● socket-specific calls: send(), recv(), sendto(), recvfrom()

● file I/O calls: read(), write()

● int domain
– Specifies what protocol is used. What is a protocol?

● ..

– Domain examples

● AF_UNIX: Local communication (this computer)

● AF_INET: IPv4 Internet protocols

● AF_INET6: IPv6 Internet protocols

25-03-16 16

socket() cont

int socket(int domain, int type, int protocol)

● int type
– SOCK_STREAM: TCP

..

● Connection-based / connection-oriented: will explain later

– SOCK_DGRAM: UDP
..

● Connectionless: will explain later.

● int protocol
– Always 0 for us; not used for AF_UNIX, AF_INET, and

AF_INET6.

– Some domains allow different protocols.

25-03-16 17

Stream Socket Sequence (TCP)

socket()
bind()
listen()

accept()
socket()

connect()

write()
read()

write()
read()

close()close()

Passive Socket
(Server)

Active Socket
(Client)

read()
write()

read()
write()

..
waits for

connection
attempt

accept()
returns on

new
connection

25-03-16 18

TCP Explanation: bind()

● socket() creates a socket.

● bind()..
– Uses a generic address struct.

– Different protocols use different structs
(with different-yet-similar names, and different fields).

struct sockaddr {
 sa_family_t sa_family;
 char sa_data[14];
 // size varies.
 // bind() given struct size.

25-03-16 19

TCP Explanation: listen(), accept()

● listen()..
– i.e., it's used to wait for a connection to come (a server).

– By default, a socket is active.

● accept()..
– Returns a new socket to use for the new connection.

– The original socket is only used to accept new connections.

● connect()..
– "connection-oriented" means we establish a connection first.

25-03-16 20

ABCD TCP Call Sequence

● Which of the following is the most likely sequence of calls for
a TCP server?

socket()
bind()
listen()
accept()
read()
write()
close()

a)

socket()
bind()
listen()
read()
accept()
write()
close()

b)

socket()
bind()
write()
listen()
accept()
read()
close()

d)

socket()
bind()
listen()
accept()
write()
read()
close()

c)

25-03-16 21

Datagram Socket Sequence (UDP)

socket()
bind()

recvfrom() socket()

sendto()
recvfrom()

sendto()
recvfrom()

close()close()

Passive Socket
(Server)

Active Socket
(Client)

sendto()
recvfrom()

sendto()

..
waits for
message

arrival

25-03-16 22

UDP Explanation

● "connectionless" means
..

– It is like an SMS message that is received one-off

– Each time we receive a message we are told who sent it.

● UDP has no active or passive sockets
– sendto() needs to specify the receiver's address every time.

– recvfrom() tells you who sent it.

25-03-16 23

ABCD UDP Call Sequence

● Which of the following is the most likely sequence of calls for
a UDP server?

socket()
bind()
listen()
sendto()
close()

a)

socket()
bind()
sendto()
recvfrom()
close()

b)

socket()
bind()
recvfrom()
sendto()
close()

d)

socket()
bind()
read()
write()
close()

c)

25-03-16 24

ABCD: Who’s call is it?

● Which of the options on the right is most likely to use all of
the following calls (not in order):

a) UDP Client

b) UDP Server

c) TCP Client

d) TCP Server

connect()
close()
read()
socket()
write()

25-03-16 25

ABCD: Who’s call is it?

● Which of the options on the right is most likely to use all of
the following calls (not in order):

a) UDP Client

b) UDP Server

c) TCP Client

d) TCP Server

bind()
close()
recvfrom()
sendto()
socket()

25-03-16 26

ABCD: Who’s call is it?

● Which of the options on the right is most likely to use all of
the following calls (not in order):

a) UDP Client

b) UDP Server

c) TCP Client

d) TCP Server

accept()
bind()
close()
listen()
read()
socket()
write()

25-03-16 27

TCP Activity

● Create two TCP programs: server and client.
– Implement the socket sequence using AF_UNIX.

(Local machine)

– The client should be able to send messages typed on the
terminal to the server.

– The server should be able to print out the messages.

– man unix for detailed info for AF_UNIX.

– An AF_UNIX address uses struct sockaddr_un:

struct sockaddr_un {
 sa_family_t sun_family; /* AF_UNIX */
 char sun_path[108]; /* Pathname = “tmp” */
};

25-03-16 28

UDP Activity

● Create two UDP programs: server and client.
– Implement the socket sequence using AF_UNIX.

(Local machine)

– The client should be able to send messages typed on the
terminal to the server.

– The server should be able to print out the messages.

– man unix for detailed info for AF_UNIX.

– An AF_UNIX address uses struct sockaddr_un:

struct sockaddr_un {
 sa_family_t sun_family; /* AF_UNIX */
 char sun_path[108]; /* Pathname = “tmp” */
};

25-03-16 29

Summary

● Network Stack has layers (bottom-up)
– phy, link, IP, transport, application

● Socket: Connect to communicate across network.

● TCP:
– Connection-oriented; in-order delivery.

– Server:
socket(), bind(), listen(), accept(), read(), write()... close()

– Client: socket(), connect(), write(), read(), ... close()

● UDP:
– Connectionless

– Server: socket(), bind(), recvfrom(), sendto(), ... close()

– Client: socket(), sendto(), recvfrom(), close()

