
25-03-12 1

File I/O
File Systems

© Dr. B. FraserSlides 9.2CMPT 201

25-03-12 2

Topics

● Can we do anything more than just use data files?

● How are file systems organized?

● What are hard/soft links?

25-03-12 3

The Universality of I/O

25-03-12 4

Everything is a File

● UNIX I/O model gives access to many things via files:
– Actual files!

– ..

– Networks

– Process information

● /proc File System
– Shows system and process

information using open() /
read() / etc.

– ..

– But they are not "real files"
stored on disks.

Example: /proc file system

● /proc/cpuinfo CPU info
● /proc/meminfo memory info
● /proc/PID/status process info
● /proc/PID/fd file descriptor info
● /proc/PID/task/TID thread info

25-03-12 5

E.g., Terminal

● Universality of file IO: Terminal
– 3 standard file descriptors that are always open.

● These are..

● fork() clones some opened file descriptors;
so child processes also has them.

File
Descriptor

Purpose POSIX Name stdio stream

0 Standard Input STDIN_FILENO stdin

1 Standard Output STDOUT_FILENO stdout

2 Standard Error STDERR_FILENO stderr

25-03-12 6

E.g., Device Files

● Many devices have a "device file" in /dev/
– This is called a node.

● Some are..
– e.g., a mouse, a disk.

● Some are..
– /dev/null provides a "black hole" of all data written to it.

– /dev/zero provides infinite null characters.

– /dev/random and /dev/urandom are pseudorandom number
generators.

$ od -vAn -N2 -tu2 < /dev/urandom

25-03-12 7

E.g., /sys File System

● File IO in /sys file system
– /sys..

e.g., various device setups, kernel subsystem info, etc.

● Examples
– Controlling LEDs

– Accessing secondary processors

– Communicating to an accelerometer, etc.

● ioctl syscall
– Extra syscall for I/O for things

..

– E.g., Change the speed of a serial port.

25-03-12 8

Disk Partitions

25-03-12 9

Disk Partitions

● ..
– /proc/partitions shows the partition info.

– In Windows, partitions are C:, D: , etc.

● A partition is typically used as a file system
– A file system is

..

– Many different types of file systems.

– Each partition can have a different file system.

● E.g., BeagleY-AI board has 2 partitions on its micro-SD card:
– One is Fat32, accessible to Windows and storing

configuration data.

– One is EXT4, used by Linux to store rest of the root file
system.

25-03-12 10

Disk Partitions (cont)

● User's perspective
– ..

starts with root directory /.

– Each partition contains a different tree
(More later when talking about mounting)

● Swap Partition
– A partition is also used as a swap space for memory

management
e.g., ..

– /proc/swaps shows the swap space info.
(Don't always need to have swap space)

25-03-12 11

I-Nodes

25-03-12 12

I-Nodes

● A file is associated with an i-node.
– ..

e.g., file type, permissions, owner, timestamps, etc.

– An i-node is identified by a number.
ls -li shows i-node numbers (1st column).

● stat(), lstat(), and fstat()
– Functions that work with file metadata mostly from the i-node.

– Read man 2 stat and man 3 stat for more details.

25-03-12 13

Activity: I-Node

● Activity: use stat() to display if path is file or directory
– Use command line argument to get filename (arg[1] likely)

– Read man inode, especially about st_mode.

● Check out S_ISREG(...), and S_ISDIR(...)

– Print "Regular file" if it's a file.

– Print "Directory" if its a directory.

– Print "Other" otherwise.

25-03-12 14

Hard and Soft Links

25-03-12 15

Hard Links

● Hard links
..

– A hard link is giving another name to an existing file.

● Hard link limitations
– Cannot hard link a directory

This prevents circular links,
 i.e., a child directory that links to the parent directory.

– Hard links should be within the same file system,
because a hard link is giving another name to an existing file.

25-03-12 16

Activity: Hard Links

● [5 min] Activity:
Use ln to create a hard link to a file.

– Read man ln to figure out how to create a hard link.

– Run ls -li for both the original file and the hard link.
(They're exactly the same)

● ls -li shows the number of links as well (the third column)

● # links should increase as more hard links are created

● Modify content of original file
– Check contents of the hard link (and vice versa).

– They should be the same.

25-03-12 17

How rm works (aside)

● rm only deletes the hard link.
– ..

(there's a system call used for deleting a file: unlink())

(There's also a more convenient one, remove())

– Only when there's no link left any more, the file gets deleted.

25-03-12 18

Soft Links (Symbolic Links)

● Soft links
..

– Unlike a hard link,..
The content of the file is the path to the original file.

– There's a system call symlink().

● No limitations like hard links
– Sym links are allowed for directories.

– Sym links do not have to be within the same file system.

25-03-12 19

Activity: Soft Links

● (5 min) Activity
Create a sym link with ln -s

– Run ls -li

● They each have a unique i-node number, meaning they
are two different files.

● The hard link count does not change even if you create a
sym link: it's because it's a different file.

– The sym link will point to nothing if the original gets deleted.

● This is called a dangling link.

25-03-12 20

Optional:
Bits - setuid, setguid, sticky

25-03-12 21

Setuid / Setguid bits

● Program Permission
– Normally, programs you run will run with your permission.

● Setuid bit: if set, the user that runs the program can act as
the owner of the program.

– E.g., passwd sets a user's password.
It must write to the password file (/etc/shadow), which is
owned by the root.

– So, use the setuid bit:

– When a user runs passwd, the program can act as root to
modify the password file.

● Setgid bit: if set, the user that runs the program can act as if
the user belonged to the group of the program.

25-03-12 22

Sticky Bit

● Sticky bit:
– Can be set on a shared directory for better control.

– When set, only able to delete/rename file if:

a) you own it

b) you have write permission for it
(It affects the directory, not the file access permissions)

25-03-12 23

Sticky Example

● Situation 1: Regular Directory
– Create a shared_photos/ directory that is write-open for others

(e.g., rw-rw-rw-).

– User dr-evil creates a file selfie.jpg in it.

– User boogieman can delete selfie.jpg.

● Situation 2: Sticky Bit!
– Set sticky bit on shared_photos/

chmod +t shared_photos/l

– User dr-evil creates a file selfie.jpg in it.

– User boogieman cannot delete selfie.jpg.

25-03-12 24

VFS - Virtual File System

and

Mount/Unmount

25-03-12 25

VFS (Virtual File System)

● VFS (Virtual File System)
..

– Interface includes: open, read, write, close, etc.
VFS in kernel define a function to handle each.

– It's not a file system of real files,
..

● If a file system implements this interface,
it can be used as a Linux file system.

– E.g.,: /sys, /proc, /dev, ...

25-03-12 26

Mounting

● Linux presents all file systems as a single tree
– Starts at root directory /

● In reality, this single file tree
..

● Recall:
– A partition contains a file tree

– There can be multiple partitions on a single disk.

– There can be multiple disks for a single machine.

25-03-12 27

Mounting and Unmounting

● Mounting
..

– All file systems (from different partitions/disks) are mounted
and form a single file tree.

● mount command mounts a file tree (a file system) to a
specific directory

– This target directory is called a mount point

– The mount command also shows the current setup.
(Shows the same information as /proc/mounts).

● The umount command unmounts a file system.

25-03-12 28

Summary

● Everything is a file
– Use file operations to access almost anything.

– /proc for process info

– /dev for devices

– /sys for system info

● Partitions split up disks

● I-Nodes used for meta data about each file/directory.

● Hard/soft links allow two entries for one file.

● Mounting places one file tree inside another.

