
25-03-10 1

File I/O
Syscalls & StdLib

© Dr. B. FraserSlides 9.1CMPT 201

25-03-10 2

Topics

● What syscalls can we use to access files (like write())?

● Why are there stdio functions, like fprintf(), in addition to
write()?

● Why do writes sometimes not happen right away?

25-03-10 3

Basic I/O
System Calls

25-03-10 4

File Offset

● File offset
..

– Offset is where both read() and write() occur (one pointer).

– Move it to an arbitrary position using lseek()

– read() and write() automatically increments the offset:
..

25-03-10 5

IO Syscalls

● 5 basic system calls for file I/O
– open

– read

– write

– close

– fcntl - File control

25-03-10 6

open()

● open() receives 2 or 3 parameters:
– int open(const char *pathname, int flags);

– int open(const char *pathname, int flags, mode_t mode);

● flags: ..
– Must be one of: O_RDONLY, O_WRONLY, or O_RDWR

Read only, write only, read/write

● Flags can also be bitwise-or'd with others such as:
– O_RDWR | O_APPEND: All write actions happen at end of file

– O_WRONLF | O_CREAT: If file does not exist, then create it.

– O_RDWR | O_TMPFILE: Create an unnamed temporary file

– O_WRONLY | O_TRUNC: Truncate file when opened for writing

● Bitwise-or sets individual bits in a bit vector,
e.g., O_RDWR | O_CREAT

25-03-10 7

open() cont

● Recall:
– int open(const char *pathname, int flags);

– int open(const char *pathname, int flags, mode_t mode);

● mode
– ..

(flags O_CREAT or O_TMPFILE)

● S_IRWXU: User can read/write/execute

● S_IRUSR | S_IWUSR: ..

● Return Value
– ..

a handle for the file to read and write:
it’s a small non-negative integer (int)

– It could change every time you open the file.

25-03-10 8

write()

ssize_t write(int fd, const void *buf, size_t count);

● write() writes buf to a file descriptor and
..

● man 2 write important points:
– ..

● insufficient space on disk

● call interrupted by a signal handler

– Writing takes place at the file offset, and
offset is incremented by the number of bytes actually written.

25-03-10 9

read()

ssize_t read(int fd, void *buf, size_t count);

● read() reads from a file descriptor and
..

● `man 2 read` important points:
– read operation commences at the file offset,

which is incremented by the number of bytes read.

– If file offset is at or past the end of file,
..

– Not an error if # bytes read < # bytes requested

● fewer bytes available right now (near end-of-file or
reading pipe/terminal)

● or read() was interrupted by a signal

25-03-10 10

close()

int close(int fd);
– closes the file descriptor.

– Writes any remaining buffered data to file.

25-03-10 11

lseek()

off_t lseek(int fd, off_t offset, int whence);

● Manually adjust the file offset.
– man lseek

● whence
– ..

● SEEK_SET: Start of file

● SEEK_CUR: Current offset

● SEEK_END: End of file (1st byte after end of file)

– offset is always added.

– Can seek past end of file:
next write will extend file with 0’s.

25-03-10 12

ABCD: lseek

● Suppose a file has 6 bytes (i.e., EOF is at 6) and
the current file offset is 4:

– Note: <EOF> does not actually appear in the file.

● What character is read when doing a read() of 1 byte after
the following calls (in isolation)?

1) lseek(fd, SEEK_SET, 4)

2) lseek(fd, SEEK_CUR, -1)

3) lseek(fd, SEEK_END, -1)

a) l

b) o

c) !

d) none

Index 0 1 2 3 4 5 6 7 ...

Content H e l l o ! <EOF>

25-03-10 13

fcntl()

int fcntl(int fd, int op, ... /* arg */);

● File control
– man fcntl

– It can do many things, such as

● modify flags and mode used when file was opened:
op = F_SETFL (set flag)

25-03-10 14

Activity: Files

● Write a program that:
– Creates a new file named “tmp” in current folder

– Writes X bytes to a file

● Write a string like “Hello World!”; your choice!

– Moves the file offset backward by X/2 bytes

– Reads and prints out from the offset to EOF

– Closes the file

Solution: lseek_half.c

25-03-10 15

Buffered I/O

25-03-10 16

Categories of File Functions

● Syscalls
– I/O functions that are system calls:

write(), read(), etc. (previous slides)

● ..
– All I/O functions that start with f:

fprintf(), fscanf(), fputs(), fgets(), fput(), fget(), etc.

– The same functions without f:

printf(), scanf(), puts(), gets(), etc.

● What’s the difference?
– Let's look at write(), fprintf(), and printf()

25-03-10 17

write() vs fprintf()

● write() directly sends data to the kernel,
fprintf() ..

– Uses write() under the hood.

– Because of this,..

– fprintf() generates fewer syscalls, which gives better
performance (less overhead).

● File Descriptor vs FILE stream
– Syscalls like write() take..

ssize_t write(int fd, const void *buf, size_t count);

– Library functions like fprintf() take..
int fprintf(FILE *stream, const char *format, ...);

25-03-10 18

Stream vs File Descriptor

● What is a Stream
FILE *stream

– Convenient wrapper around a file descriptor.
Used by the stdio functions.

– Think of this as
..

● Converting Stream <==> File Descriptor
– You can get the file stream from a file descriptor with:

..

– You can get the file descriptor from a file stream with:
..

25-03-10 19

Relationship

● User program has data
(in memory) to write.

● It calls library function.

● Data written into
library’s buffer.

● Later executes syscall
to write
to kernel.

● Kernel will
write to disk.

fprintf()

stdio buffer
(memory)

fscanf() ...

write() read() ...

User Program

K
e
rn

e
l

S
p
a

c
e

U
s
e

r
S

p
a
c
e

stdlib
functions

I/O
system
calls

Disk

25-03-10 20

Activity: Kernel Write

● Write a program that will:
– open() a file named tmp,

– write() a string (your choice) to tmp,

– infinite loop that calls sleep() for 30 seconds each loop.

● Experiment
– Run it in the background

– Did it write to the file tmp. Check with cat.
(It should.)

● When done, delete tmp from the command line.

25-03-10 21

Activity: Library print

● Write another program that will
– fopen() a file named tmp,

– fprintf() a string to tmp,

– infinite loop that calls sleep() for 30 seconds each iteration.

● Run It
– Run it in the background

– Did it write to the file tmp. Check with cat.
(It should not!)

● Experiment
– Change to close file after writing. Repeat running it.

It should write to file.

25-03-10 22

Buffering

● Explain Behaviour
– Why did fprintf() not write to the file when the file is left open?

– Why did it write when we closed?

– Answer:..

● fflush() immediately sends the buffered data to the kernel.
– Calling setbuf() with NULL as the buffer automatically does

flushing.

– Read `man setbuf` for more details.

25-03-10 23

Activity: fflush()

● Change Previous Program with fprintf():
– Add fflush() call after printing

● Run it and see if it writes to tmp. (It should.)

25-03-10 24

Kernel Buffering

● Kernel has
read/write buffers
too.

● Even kernel does
not immediately
write to disk.

fprintf()

stdio buffer
(memory)

fscanf() ...

write()

Kernel buffer
(memory)

read() ...

Disk

User Program

K
e
rn

e
l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

stdlib
functions

I/O
system
calls

25-03-10 25

Kernel Buffering

● Can force kernel to flush buffer with fsync()
– Using O_SYNC when with open() automatically does fsync().

● Parallel between user buffering and kernel buffering
– fflush() and fsync(): both flush their buffer.

– setbuf() with a NULL buffer and O_SYNC:
..

25-03-10 26

Blocking vs Non-Blocking I/O

● Blocking call
..

– E.g., a blocking read() call doesn't return until there's
something to read.

● Non-blocking call
– O_NONBLOCK flag

(either with open() or with fcntl() & F_SETFL)

– If an operation can't be done immediately, then
..

25-03-10 27

Summary

● 5 Syscalls for File Access
– int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode_t mode);

– ssize_t write(int fd, const void *buf, size_t count);

– ssize_t read(int fd, void *buf, size_t count);

– int close();

– off_t lseek(int fd, off_t offset, int whence);

● Syscalls vs Library functions
– write() vs fprintf()

– Non-buffered vs buffered IO

– File descriptor (int) vs stream (FILE*)

