:.'- |- ﬂ:j-..';léﬁ- I -.'H-"" -n"",;"-ﬁ F.I Ie IIO | I ..ir | I % -|_": ir‘ | '-_ :-.-!.. E ’.- Aia
a 4 | i - |}|: 3 % : .h‘-x 1 ke -_l.:l . 5 e E
4 B syscalls e-stdLib

AL AT L N R T T S Rl R T s e TR T e I et Bl s TR | i L
ey BN g% 5 am ---.;f-_;-_:.ﬂ‘- “!:}_'-; S ti gk E .5 ful. -

"_ E

!

=Tk
. H - - e i
n L=
= 1 T] af- .-'?i. i ‘Hl\- "‘,h

e

—

CMPT 201 Sides 9.1 © Dr. B. Fraser

Topics

* What syscalls can we use to access files (like write())?

* Why are there stdio functions, like fprintf(), in addition to
write()?

* Why do writes sometimes not happen right away?

25-03-10 2

25-03-10 3

File Offset

e File offset

- Offset is where both read() and write() occur (one pointer).
- Move it to an arbitrary position using Iseek()
- read() and write() automatically increments the offset:

25-03-10 4

IO Syscalls

25-03-10

open
read
write
close
fecntl - File control

open()

open() receives 2 or 3 parameters:
- 1int open(const char *pathname, int flags),

25-03-10

- 1nt open(const char *pathname, int flags, mode t mode);

flags: ..

— Must be one of: O_ RDONLY, O WRONLY, or O_ RDWR
Read only, write only, read/write

- O_RDWR | O_APPEND:
- O_WRONLF | O_CREAT:
- O_RDWR | O_TMPFILE:
- O_WRONLY | O_TRUNC:

e.g., O RDWR | O_CREAT

All write actions happen at end of file
If file does not exist, then create it.
Create an unnamed temporary file
Truncate file when opened for writing

open() cont

— Int open(const char *pathname, int flags);
- Int open(const char *pathname, int flags, mode_t mode);

* mode

(flags O _CREAT or O_TMPFILE)
« S IRWXU: User can read/write/execute
S IRUSR | S IWUSR: ..

a handle for the file to read and write:
It's a small non-negative integer (int)

- It could change every time you open the file.

25-03-10 7

write()

ssize_t write(int fd, const void *buf, size_t count);

* write() writes buf to a file descriptor and

* man 2 write

* insufficient space on disk
e call interrupted by a signal handler

- Writing takes place at the file offset, and
offset is incremented by the number of bytes actually written.

25-03-10 8

read()

ssize_t read(int fd, void *buf, size_t count),

* read() reads from a file descriptor and

e man 2read
— read operation commences at the file offset,
which is incremented by the number of bytes read.

- If file offset is at or past the end of file,

— Not an error if # bytes read < # bytes requested

 fewer bytes available right now (near end-of-file or
reading pipe/terminal)

 or read() was interrupted by a signal

25-03-10

close()

int close(int fd);
- closes the file descriptor.

- Writes any remaining buffered data to file.

25-03-10 10

Iseek()

off_t lseek(int fd, off_t offset, int whence);
* Manually adjust the file offset.

e whence

« SEEK _SET: Start of file

« SEEK _CUR: Current offset

« SEEK _END: End of file (1% byte after end of file)
- offset is always added.

— Can seek past end of file:
next write will extend file with O’s.

25-03-10 11

ABCD: Iseek

* Suppose a file has 6 bytes (i.e., EOF is at 6) and

the current file offset is 4:
Index O (12345 6 7

Content H el | o! <EOF>

|

- Note: <EOF> does not actually appear in the file.

* What character is read when doing a read() of 1 byte after
the following calls (in isolation)?

1) Iseek(fd, SEEK_SET, 4)
2) Iseek(fd, SEEK CUR, -1)
3)Iseek(fd, SEEK END, -1)

25-03-10 12

fentl()
int fentl(int fd, int op, ... /* arg */);

- man fcntl
- It can do many things, such as

* modify flags and mode used when file was opened:
op = F SETFL (set flag)

25-03-10 13

Activity: Files

- Creates a new file named “tmp” in current folder
- Writes X bytes to a file
* Write a string like “Hello World!”; your choice!
- Moves the file offset backward by X/2 bytes
- Reads and prints out from the offset to EOF
- Closes the file

25-03-10 Solution: Iseek_half.c 14

25-03-10 15

Categories of File Functions

e Syscalls
— |/O functions that are system calls:
write(), read(), etc. (previous slides)

- All I/0 functions that start with f:
fprintf(), fscanf(), fputs(), fgets(), fput(), fget(), etc.

— The same functions without f:
printf(), scanf(), puts(), gets(), etc.

- Let's look at write(), fprintf(), and printf()

25-03-10 16

write() vs fprintf()

* write() directly sends data to the kernel,
fprintf() ..

- Uses write() under the hood.
- Because of this,..

- fprintf() generates fewer syscalls, which gives better
performance (less overhead).

— Syscalls like write() take..
ssize t write(int fd, const void *buf, size_t count);

— Library functions like fprintf() take..
Int fprintf(EILE *stream, const char *format, ...);

25-03-10 17

Stream vs File Descriptor

FILE *stream

— Convenient wrapper around a file descriptor.
Used by the stdio functions.

— Think of this as

- You can get the file stream from a file descriptor with:

— You can get the file descriptor from a file stream with:

25-03-10 18

Relationship

* User program has_ data
(in memory) to write.

|t calls library function. stdlib
Q functions
(©
c . o
. [_)ata written into 2 stdio buffer
library’s buffer. o (memory)
>
* Later executes syscall o
to write Q § system
to kernel. 22 calls
* Kernel will
write to disk.

25-03-10 19

Activity: Kernel Write

- open() a file named tmp,
— write() a string (your choice) to tmp,
— Infinite loop that calls sleep() for 30 seconds each loop.

- Run it in the background

— Did it write to the file tmp. Check with cat.
(It should.)

* When done, delete tmp from the command line.

25-03-10 20

Activity: Library print

- fopen() a file named tmp,
— fprintf() a string to tmp,
— Infinite loop that calls sleep() for 30 seconds each iteration.

- Run it in the background

— Did it write to the file tmp. Check with cat.
(It should not!)

- Change to close file after writing. Repeat running it.
It should write to file.

25-03-10 21

Buffering

- Why did fprintf() not write to the file when the file is left open?
- Why did it write when we closed?
- Answer:..

* fflush() immediately sends the buffered data to the kernel.
— Calling setbuf() with NULL as the buffer automatically does
flushing.

- Read man setbuf for more details.

25-03-10 22

Activity: fflush()

— Add fflush() call after printing
* Run it and see if it writes to tmp. (It should.)

25-03-10 23

Kernel Buffering

e Kernel has

read/write buffers
too.

stdlib

functions

e Even kernel does
not immediately
write to disk.

User Space

/O
system
calls

Kernel Space

Kernel buffer
(memory)

25-03-10 24

Kernel Buffering

* Can force kernel to flush buffer with fsync()
- Using O_SYNC when with open() automatically does fsync().

— fflush() and fsync(): both flush their buffer.
— setbuf() with a NULL buffer and O_SYNC:

25-03-10 25

Blocking vs Non-Blocking 1/O

- a blocking read() call doesn't return until there's
something to read.

- O_NONBLOCK flag
(either with open() or with fcntl() & F_ SETFL)

- If an operation can't be done immediately, then

25-03-10 26

Summary

- 1nt open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

- ssize_t write(int fd, const void *buf, size_t count);
- ssize_t read(int fd, void *buf, size_t count);

- 1nt close();

- off_t lseek(int fd, off_t offset, int whence);

— write() vs fprintf()
— Non-buffered vs buffered 10
— File descriptor (int) vs stream (FILE*)

25-03-10 27

