
25-03-03 1

Synchronization:
Patterns

Condition
Variables
 &
Semaphores

© Dr. B. FraserSlides 8.2CMPT 201

25-03-03 2

Topics

● Can we do something more powerful than just locking?
– Condition variables to “signal” other threads.

– Semaphores to count how many things are available.

● Can we allow multiple readers but only one writer?

● What can we solve with synchronization?
– How do dining philosophers help us with sychronization?

– What’s a circular buffer?

25-03-03 3

Condition Variables

25-03-03 4

Producer-Consumer pattern

● Producer-Consumer
A common programming pattern.

– Producer(s): one set of threads creating data.

– Consumer(s): one set of threads using the data.

– Store data: shared resource (e.g., variable or buffer) to hold
the values that have been produced but not yet consumed.

..

25-03-03 5

static int avail = 0;

int main() {
 pthread_t t1;
 pthread_create(&t1, NULL, thread_func, NULL);

 for (;;) {
 while (avail > 0) {
 printf("I just consumed %d\n", avail);
 avail--;
 }
 }
 pthread_join(t1, NULL);
}

ABCD: Data race

static void *thread_func(void *arg) {
 for (;;) {
 avail++;
 sleep(1);
 }

 return 0;
}

a) Yes, two threads change a shared variable.

b) No, one increments, the other decrements.

c) No, avail is static.

d) No, main()’s while loop prevents concurrent edits to a shared variable.

● Is there a data race in this code?

25-03-03 6

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static int avail = 0;

int main() {
 pthread_t t1;
 pthread_create(&t1, NULL, thread_func, NULL);

 for (;;) {
 pthread_mutex_lock(&mtx);
 {
 while (avail > 0) {
 // Simulate "consume everything available"
 printf("I just consumed %d\n", avail);
 avail--;

 }
 }
 pthread_mutex_unlock(&mtx);
 }
 pthread_join(t1, NULL);
}

Producer-Consumer

static void *thread_func(void *arg) {
 for (;;) {
 pthread_mutex_lock(&mtx);
 {

 avail++;

 }
 pthread_mutex_unlock(&mtx);
 sleep(1);
 }

 return 0;
}

Simulate making
something one at

a time.

Simulate consuming
something: decrement to 0

25-03-03 7

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static int avail = 0;

int main() {
 pthread_t t1;
 pthread_create(&t1, NULL, thread_func, NULL);

 for (;;) {
 pthread_mutex_lock(&mtx);
 {
 while (avail > 0) {
 // Simulate "consume everything available"
 printf("I just consumed %d\n", avail);
 avail--;

 }
 }
 pthread_mutex_unlock(&mtx);
 }
 pthread_join(t1, NULL);
}

static void *thread_func(void *arg) {
 for (;;) {
 pthread_mutex_lock(&mtx);
 {
 avail++;
 }
 pthread_mutex_unlock(&mtx);
 sleep(1);
 }

 return 0;
}

ABCD: Efficiency

a) Wasted space: Use of an int when a bool would be better for `avail`.

b) Wasted CPU: main keeps looping even when nothing to consume.

c) Wasted CPU: main locking & unlocking mutex when there are
multiple values to consume.

d) Wasted CPU: Program will never end.

● What is the major source of
inefficiency in this program?

25-03-03 8

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static int avail = 0;

int main() {
 pthread_t t1;
 int s = pthread_create(&t1, NULL, thread_func, NULL);
 if (s != 0) {
 perror("pthread_create");
 exit(1);
 }

 for (;;) {
 s = pthread_mutex_lock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 exit(1);
 }

 while (avail > 0) {
 printf("I just consumed %d\n", avail);
 avail--;
 }

 s = pthread_mutex_unlock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_unlock");
 exit(1);
 }
 }

 s = pthread_join(t1, NULL);
 if (s != 0) {
 perror("pthread_create");
 exit(1);
 }
}

Producer-Consumer
(with Error Checking)

static void *thread_func(void *arg) {
 for (;;) {
 int s = pthread_mutex_lock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 pthread_exit((void *)1);
 }
 avail++;

 s = pthread_mutex_unlock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_unlock");
 pthread_exit((void *)1);
 }
 sleep(1);
 }

 return 0;
}

25-03-03 9

Condition Variable

● Condition variable purpose:
..

● Using a condition variable:
(i) one thread sends a notification to the condition variable,

(ii) another thread waits until
 a notification is sent to the condition variable.

– While waiting,..

25-03-03 10

Integrates with Mutex

● We want to ensure that consumer(s) are thread safe.
– ..

● A condition variable works closely with a mutex:

We need to hold the mutex
while processing data..

We'll wait until there is data available,..

That way the producer
(or other consumers)

can do work while we sleep.

25-03-03 11

pthread Condition Variables

● Define the variable
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

● Wait on a condition variable
pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

– Internally, it will:

● ..

● Once signalled,..

– Why release mutex when waiting?
..

● Lock-safe Sleep

cond is paired with a mutex so consumer can be sure that:
– No items added between unlocking mutex and waiting for cond.

(important because a signal with no thread waiting is lost).

– Once woken up, it again holds the mutex.

25-03-03 12

pthread Condition Variables (cont)

● Wake up one thread waiting on cond
pthread_cond_signal(pthread_cond_t *cond);

– How many threads are waiting on cond?
1: It wakes it up one thread.
2+: One wakes up, no control over which one.
0: ..

● Wake up all threads waiting on cond
pthread_cond_broadcast(pthread_cond_t *cond);

– All threads wake up and try to grab mutex;
..

25-03-03 13

pthread Condition Variables (cont)

● Guideline on Signalling
signal() and broadcast() are similar; how to choose?

– If any of the waiting threads is sufficient to process the event:
..

● It’s likely that all the threads do the same thing.

– If all of the waiting threads need to respond to an event:
..

● It’s likely each thread does something different
in response to the event; all need to happen

25-03-03 14

Usage Pattern

● Details
– ..

– Producer should signal after releasing mutex to avoid waking up a
consumer with cond only to wait for mutex (extra context switch)

– Some systems optimize with "wait morphing" to just move process
from one wait queue to another in the OS

Producer:
 pthread_mutex_lock(&mutex);

 <do some work producing an item>

 pthread_mutex_unlock(&mutex);

 pthread_cond_signal(&cond);

Consumer:
 pthread_mutex_lock(&mutex);

 while (<no work to do>) {
 pthread_cond_wait(&cond, &mutex);
 }

 <do some work>

 pthread_mutex_unlock(&mutex);

25-03-03 15

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

static int avail = 0;

int main() {
 pthread_t t1;
 pthread_create(&t1, NULL, thread_func, NULL);

 for (;;) {
 pthread_mutex_lock(&mtx);

 // This while loop is new.
 while (avail == 0) {
 pthread_cond_wait(&cond, &mtx);
 }

 while (avail > 0) {
 // Simulate "consume everything"
 printf("--> Consumer:%d.\n", avail);
 avail--;
 }

 pthread_mutex_unlock(&mtx);
 }

 pthread_join(t1, NULL);
}

Producer-Consumer with Condition Variable

static void *thread_func(void *arg) {
 for (;;) {
 pthread_mutex_lock(&mtx);

 avail++;
 printf("Producer: %d.\n", avail);

 pthread_mutex_unlock(&mtx);

 // This signal is new.
 pthread_cond_signal(&cond);
 sleep(1);
 }
}

25-03-03 16

Discussion of Code

● Use of Condition Variables Discussion
– mutex still protects the shared variable avail.

– After producing an item, producer sends a signal to cond to
wake up a waiting thread, if any: pthread_cond_signal(&cond)

● This notifies other thread there is something to consume.

– At each iteration, consumer checks if there is any available
item to consume (the new while loop).

● If nothing's available (avail == 0), it sleeps:
pthread_cond_wait()

● This releases the mutex before sleeping

– Consumer wakes up when signalled by the producer:

● pthread_cond_wait() grabs mutex before returning.

25-03-03 17

pthread_cond_wait() in loop?

● Why put pthread_cond_wait() in a loop?
– Consumer only has work to do when: (avail != 0)

(avail != 0) is called the..

– Consumer only waits if there is no data to process.
For this, just if (avial == 0) seems fine.

– But, we must recheck the
predicate after we are signalled:

● We were waiting on the
mutex as well as cond,
..

● Therefore, no guarantee after
a wake-up that data is available.

int main() {
 for (;;) {
 pthread_mutex_lock(&mtx);

 // This while loop is new.
 while (avail == 0) {
 pthread_cond_wait(&cond, &mtx);
 }

 while (avail > 0) {
 // Simulate "consume everything"
 avail--;
 }

 pthread_mutex_unlock(&mtx);
 }
}

25-03-03 18

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
static int avail = 0;

int main() {
 pthread_t t1;
 void *res;
 int s;

 s = pthread_create(&t1, NULL, thread_func, NULL);
 if (s != 0) {
 perror("pthread_create");
 exit(1);
 }

 for (;;) {
 s = pthread_mutex_lock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 exit(1);
 }

 // This while loop is new.
 while (avail == 0) {
 s = pthread_cond_wait(&cond, &mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 exit(1);
 }
 }

 while (avail > 0) {
 /* This is simulating "consume everything available" */
 printf("--> Consumer: avail at %d.\n", avail);
 avail--;
 }

 s = pthread_mutex_unlock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_unlock");
 exit(1);
 }
 }
}

static void *thread_func(void *arg) {
 for (;;) {
 int s = pthread_mutex_lock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 pthread_exit((void *)1);
 }
 avail++;
 printf("Producer: avail up to %d.\n", avail);

 s = pthread_mutex_unlock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_unlock");
 pthread_exit((void *)1);
 }

 // This signal is new.
 s = pthread_cond_signal(&cond);
 if (s != 0) {
 perror("pthread_cond_signal");
 pthread_exit((void *)1);
 }
 sleep(1);
 }

 return 0;
}

Producer-Consumer
with Condition Variable
with Error Checking

25-03-03 19

Condition Variable Template for Consumer
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int main() {
 int s = pthread_mutex_lock(&mtx);

 if (s != 0) {
 perror("pthread_mutex_lock");
 exit(1);
 }

 while (/* Check if there is nothing to consume */) {
 /* Use while, not if, other threads might have woken
 up first and changed the shared variable. */
 pthread_cond_wait(&cond, &mtx);
 }

 // Do the necessary work with the shared variable, e.g., consume.

 s = pthread_mutex_unlock(&mtx);
 if (s != 0) {
 perror("pthread_mutex_lock");
 exit(1);
 }
}

25-03-03 20

Semaphores

25-03-03 21

Semaphores

● ..
– A lock (mutex) is either available or not available, i.e., binary.

– A semaphore is more flexible:
..
i.e., how many are available.

● Useful when availability is not binary but a count
e.g., how many items are available to consume?

– If the availability count is 0,
it means the semaphore is..

– If the availability count is greater than 0,
it means the semaphore is..

– Must initialize the semaphore with
an initial max availability count.

25-03-03 22

pthread Semaphore Functions

● Create & Initialize the semaphore
sem_t sem;

sem_init(sem_t *sem, int pshared, unsigned int value);

– Sets current # available to value for sem.

– pshared indicates if sem is for threads (0) or processes (1).

25-03-03 23

pthread Semaphore Functions

● Wait to "acquire" one of the semaphore's count
sem_wait(sem_t *sem);

– If count is 0, it blocks until count > 0.

– When count is > 0 it decrements count and returns.

– Does not guarantee mutual exclusion to a critical section:
..

● Signal to count-up the semaphore:
sem_post(sem_t *sem);

– If synchronizing access a..
then posting can be like..

● E.g., allow at most 50 students registered in a course.

– If synchronizing between different sections of code,
then it might indicate a new resource produced.

25-03-03 24

ABCD: Semaphore

● Which of these creates a semaphore which
behaves the same as a mutex?

sem_init(sem_t *sem, int pshared, unsigned int value);

a) sem_init(&sem, 0, 0);

b) sem_init(&sem, 0, 1);

c) sem_init(&sem, 0, 2);

d) sem_init(&mutex, 0, 10);

25-03-03 25

Semaphore Use Ideas

● Places to use a Semaphore
– Can have a..

to acquire and release the mutex.

– Can have different parts of the code use them, such as:

● Produce: ..

● Consumer: ..

● May still need a mutex to protect shared data.

25-03-03 26

Read-Write Lock

25-03-03 27

Read-Write Lock

● Read-write lock
– Another synchronization primitive.

– ..

● Multiple readers can all read at the same time!

● Nobody else can access data while anyone writes.

● Acquire lock for reading
pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

– Allows any thread(s) to grab rwlock for reading as long as
there is no thread that hold it for writing.

● Acquire lock for writing
pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

– This allows only one thread to grab rwlock for writing.

25-03-03 28

Dining Philosophers

25-03-03 29

Dining Philosophers

● Problem Description
– Philosophers sit at a round table.

– Philosophers alternate between eating and thinking.

– To eat, a philosopher needs two forks (at their left and right).
To think, no forks are needed.

– One fork between adjacent philosophers.

● ..

● We can model this as
a synchronization problem:

– ..

– A fork is a shared resource that
only one should access at a time

For more info: https://pages.cs.wisc.edu/~remzi/OSTEP/threads-sema.pdf

25-03-03 30

Try 1: Big lock!

● Challenge
– come up with a solution that protects shared resources

correctly and does not deadlock.

● Try 1: One big lock (not efficient)
– Idea:

..

– Correctly avoids deadlocks but
..

– Linux used to use this approach to
protect kernel resource during a syscall:
“the big kernel lock”

25-03-03 31

Try 1: Lock each fork

● Try 2: One lock per fork.

● Let’s create a bad “solution”:
– Have all threads grab their right fork and then their left fork.

– But if every philosopher grabs their right fork at the same time,
then..

– The result:..

● Recall: deadlock conditions discussed previously
– We can break any of these conditions to avoid a deadlock.

1) Hold-and-wait
2) Circular wait
3) Mutual exclusion
4) No preemption

25-03-03 32

Possible Solutions

● Solution 1:
..

– E.g., Most philosophers grab right fork then left fork. Have
have one philosopher grab left fork then right fork.

– ..

● Solution 2:
..

– Grab the left lock. Try the right lock. If you can't grab it,
..

– ..
since no philosopher can hold a fork and wait.

– This does not prevent starvation
and could also lead to livelock.

25-03-03 33

#define NUMBER 5

static pthread_mutex_t mtx[NUMBER] = {PTHREAD_MUTEX_INITIALIZER};

int main() {
 pthread_t t[NUMBER];

 for (int i = 0; i < NUMBER; ++i) {
 pthread_create(&t[i], NULL,

thread_func, i);
 }

 for (int i = 0; i < NUMBER; ++i) {
 pthread_join(t[i], NULL);
 }
}

Dining Philosophers Implementation

static void *thread_func(void *arg) {
 int left = (int)arg;
 int right = ((int)arg + 1) % NUMBER;
 for (;;) {
 printf("Thread %d: thinking\n", (int)arg);
 sleep(5);

 pthread_mutex_lock(&mtx[left]);

 if (pthread_mutex_trylock(&mtx[right]) != 0) {
 pthread_mutex_unlock(&mtx[left]);
 continue;
 }

 printf("Thread %d: eating\n", (int)arg);

 pthread_mutex_unlock(&mtx[left]);

 pthread_mutex_unlock(&mtx[right]);
 }

 return 0;
}

25-03-03 34

Bounded Buffer
(Circular Buffer)

25-03-03 35

Bounded Buffer

● Problem Description
– Multiple threads share a buffer.

– Producer threads place items into the buffer.

● They must wait..

– Consumers threads take items from the buffer.

● They must wait..

● Details
– Producers:

place items from index 0 to higher indices, one at a time.

– Consumers:
remove items from index 0 to higher indices, one at a time.

– When get to last element,..

25-03-03 36

Solution

● Possible solution:
..

– Mutex protects the data structure for all threads

– Condition variable signals consumer (and producer?)

– Inefficient because..

25-03-03 37

#define SIZE 10

static char buf[SIZE] = {0};
static int in = 0, out = 0;
static sem_t filled_cnt;
static sem_t avail_cnt;
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

int main() {
 pthread_t t1;
 sem_init(&filled_cnt, 0, 0);
 sem_init(&avail_cnt, 0, SIZE);

 pthread_create(&t1, NULL, thread_func, NULL);

 // Producer Code
 for (int i = 0;; i++) {
 sem_wait(&avail_cnt);
 pthread_mutex_lock(&mtx);

 // Produce
 buf[in] = i;
 printf("Produced: %d in %d\n", buf[in], in);
 in = (in + 1) % SIZE;

 pthread_mutex_unlock(&mtx);

 sem_post(&filled_cnt);
 }

 pthread_join(t1, NULL);
}

Semaphores:
Elegant Solution

static void *thread_func(void *arg) {
 for (;;) {
 sleep(1);
 sem_wait(&filled_cnt);
 pthread_mutex_lock(&mtx);

 // Consume
 printf("Consumed: %d\n", buf[out]);
 out = (out + 1) % SIZE;

 pthread_mutex_unlock(&mtx);

 sem_post(&avail_cnt);
 }

 return 0;
}

25-03-03 38

Summary

● Condition Variable
– One thread signals another for an event.

– Paired with a mutex for mutual exclusion.

● Produce-Consumer Pattern
– Shared data structure storing waiting items.

● Semaphore
– Synchronization with a count

● Read-Write Lock
– Multiple readers allowed; only one writer.

● Classing problems
– Dining Philosophers: worry about deadlock / livelock

– Bounded buffer: elegant semaphore solution.

