
22-02-06 1

Slides #7

Random,
AND / OR

CMPT 130

© Dr. B. Fraser

22-02-06 2

Part 1: Random

1) Picking a random number

2) How can we code complex conditions (Part 2):
“Grass is wet if it rained or the sprinkler was on”

22-02-06 3

'Random' numbers

● Computers are not Random
– But we would like random numbers!

● Use rand() to return a..
between 0 and RAND_MAX (32767)

– #include <cstdlib>

– int a = rand();
int b = rand();
int c = rand();

● However:
– Each time the program is run,

a, b and c's values..

RAND_MAX
must be at least

~32K, but can be
bigger.

22-02-06 4

Seed

● The pseudorandom sequence is based on a seed
– use srand() to seed the sequence once.

srand(42);

– Based on a certain seed, the program..

● Randomize by the timer
– Computers have clocks.

– Get what seems a random seed by using the timer:
srand(time(nullptr)); // must #include <ctime>

22-02-06 5

time(nullptr)

● time() Function
– Returns..

– It takes one argument, a pointer but can just
pass a null pointer for simple use (what we need).

● Example
cout << “Seconds since Jan 1 1970: “ << time(nullptr);

● srand() needs a seed number, so we can give it the
number of seconds since Jan 1 1970!

int numSec = time(nullptr);
srand(numSec);

● Only call srand() once (usually)

– Calling it again resets the pseudorandom sequence
(which can be useful sometimes!).

22-02-06 6

Dice rolling
// Experiment with rand
const int NUM_ROLLS = 15;
const int MAX_VAL = 20;

int main()
{

// Pick a random seed based on the timer
int numSec = time(nullptr);
srand(numSec);

// Do a bunch of D20 rolls (1 to 20):
int i = 0;
while (i < NUM_ROLLS) {

cout << "Rolling: " << setw(2)
<< (rand() % MAX_VAL + 1) << endl;

i++;
}

}

Rolling: 7
Rolling: 5
Rolling: 15
Rolling: 10
Rolling: 13
Rolling: 13
Rolling: 18
Rolling: 1
Rolling: 4
Rolling: 20

= diceRolls.cpp

// Explanation of math:
int randValue = rand(); // Between 0 and RAND_MAX (>32,000)
randValue %= MAX_VAL; // Between 0 and 19
randValue += 1; // Between 1 and 20

#include <iostream>
#include <iomanip>
#include’ <cstdlib> // NEEDED for rand() and srand()
#include <ctime> // NEEDED for time()
using namespace std;

22-02-06 7

C++ Standard

● To use nullptr, must set C++ Standard to C++11:
– The “standard” is revised from time-to-time.

– The latest standard is C++20 (2020)

● In VS Code
– Automatically compiles when using nullptr

– But, be careful, different development environments
have different default settings

22-02-06 8

Pseudo Random Hiking (analogy)

● Imagine hiking on a path with numbers written on signs:
– Each sign you come to is a new pseudo-random number

● In C++: it's like calling..

– Each time you go on that hike, you get the..

● Imagine there being many different paths:
– Each path has these numbered signs.

– Which path you choose dictates the..
you see.

● In C++: calling.. picks the path

● If you restart the hike, you get the..
● In C++: calling srand()..

22-02-06 9

Modern C++ Random (C++11)
// Better Random Number Generator
#include <iostream>
#include <random>
using namespace std;

int main()
{
 // Create the random number generator
 // 1. Get random seed (different each time)
 std::random_device rd;
 // 2. Seed the random number generator
 default_random_engine engine(rd());
 // 3. Define distribution (uniform); range [1, 100]
 std::uniform_int_distribution<> distr(1, 100);

 // Generate N numbers
 for(int i = 0; i < 20; i++) {
 // Generate a random number
 std::cout << distr(engine) << ' ';
 }
 cout << endl;
 return 0;
}

rand() / srand() have
many drawbacks.

Better to use the
more complicated,
but safer “modern”
C++11 approach

22-02-06 10

Three logician just finished dinner.
The waiter asks, "do you all want dessert?"

The first logician says, "I don't know."
The second also says, "I don't know."

The last says, "Yes, we would."

1) Picking a random number (Part 1)

2) How can we code complex conditions:
“Grass is wet if it rained or the sprinkle was on”

Part 2: And & Or

22-02-06 11

Logical Operators

● Logical Operators work on Boolean values:
– And.. (true && true) == true

– Or.. (true || false) == true

– Not.. !true == false, !false == true

● Example:

int main()
{
 bool haveRainwater = ...;
 bool isWarm = ...;

 if (!isWarm) {
 cout << "Turn on heater overnight\n";
 }

 if (haveRainwater && isWarm) {
 cout << "Plant new seeds\n";
 }
}

22-02-06 12

Logical Operators Example

int main()
{
 bool isRetired = ... ;
 bool isUnemployed = ... ;
 int month = ... ;
 int day = ... ;

 // On the last day of the year, ...
 if ((month == 12) && (day == 31)) {...}

 // If either (or both) retired or unemployed then...
 if (isRetired || isUnemployed) {...}

 // If not retired or it’s Jan 1st then ...
 if (!isRetired || (month == 1 && day == 1)) {...}

 // If not retired or it's Jan 1st then ...
 bool isJan1st = (month == 1 && day == 1);
 if (!isRetired || isJan1st) { ... }
}

22-02-06 13

Truth Tables

22-02-06 14

Truth Tables Reprise

● A truth table
..

– One column for each of the logical variables or
comparisons – i.e. Boolean values

– One row for each possible combination of values

● That is for each combination of true and false

A B A && B A || B !(A || B) !A || B

T T T T F T

T F F T F F

F T F T F T

F F F F T T

22-02-06 15

Truth Table Example

● If(!(x > 7) && y <= 10))
– Is this true for certain values?

x y

14 8

9 16

7 3

1 10

x > 7 y <= 10 !(x > 7) !(x > 7) && y <= 10

T T

T F

F T

F F

x > 7 y <= 10 !(x > 7) !(x > 7) && y <= 10

T T F

T F F

F T T

F F T

x > 7 y <= 10 !(x > 7) !(x > 7) && y <= 10

T T F F

T F F F

F T T T

F F T F

22-02-06 16

Precedence Revisited

● Examples:
int x = 5;
int y = 4;
bool isDone = false;

isDone = x < y + 1;

isDone = x < y == 4;

isDone = x + 1 || y;

isDone = x < y || ! y >= x;

isDone = 1 < x < 4;

Prec.
Level

Op. Operation Associates

1 + -
!

unary plus/minus
not

R to L

2 * /
%

mult, div,
remainder

L to R

3 + - add subtract L to R

4 < >
<= >=

comparisons L to R

5 == != equal, not equal L to R

6 && AND L to R

7 || OR L to R

8 = +=
-= *=

...

assignments R to L

See text for full list.

Order can be forced by parentheses.

..

22-02-06 17

..

Quick test with Boolean

● Quick test for true:
cout << "Enter your favourite number: ";
int favNum = 0;
cin >> favNum;
bool greatNum = (favNum == 42);
if () {

cout << "Awesome choice!";
}

● The following are identical (for bool!):
– if (greatNum) {...}

if (greatNum == 1) {...} if (greatNum == true) {..}
if (greatNum != 0) {...} if (greatNum != false) {..}

if greatNum is true...

22-02-06 18

Explanatory Variables

● Explanatory variables simplify complex expressions:
..

// Option 1: One expression
if ((height >= MIN_HEIGHT) && (age >= 18) && (age <= 65)) {

cout << "Please pay adult fare.\n";
}

// Option 2: Two explanatory variables.
bool isTallEnough = (height >= MIN_HEIGHT);
bool isAdult = (age >= 18) && (age <= 65);
if (isTallEnough && isAdult) {

cout << "Please pay adult fare.\n";
}

...

22-02-06 19

Review

● What is printed?
cout << ((1 != 50) && (1 < 10 < 3)) << endl;

Note:
cout << true; // prints '1';
cout << false; // prints '0'.

22-02-06 20

Summary

● Random uses:
rand(), srand(), and time()

● Logical expressions: &&, ||, !

● Suggested rand() review:
Write a program which

– Picks a random number between 1 and 100.
Use named constants for the 1 and 100 in this case.

– Print out if the number is odd

– Print out if the number is between 40 and 60 inclusive

