
22-01-23 1

Expressions
Chapter 2.3 (part)
Slides #4

CMPT 130 © Dr. B. Fraser

22-01-23 2

Topics

1) How can we calculate values?

2) What's the best way to work with values like 3600?

22-01-23 3

Math Expressions

(And not like "Wow! Math is great!")

22-01-23 4

Expressions

● Expression:
– A statement that...

– Usually has an operator.

● Examples:
result = 3;
result = x * 2;
result = 1 * x + 2;

● Expressions usable anywhere a value is needed:
– cout << "Big number " << (1 + 2) << endl;

22-01-23 5

Order of Operations

● What is the value of result?
int result = 4 + 10 / 2;

– Is it 7 or 9? (4 + 10) / 2 or 4 + (10 / 2)

● Each operator is given a precedence:
– Higher precedence operators are applied first.

– / is higher than +, so the answer is..

– Add brackets to force an ordering.

● Associativity:
– Apply the operators from right-to-left, or left-to-right?

– +, - are left to right: do the one on the..

– =, += are right to left: do the one on the..

22-01-23 6

Operator precedence

● Operators at same

evaluated based on
associativity.

– * and / from L to R

– = and += from R to L

● Examples:
– result = -20 + 9 / 5;

– result = (-20 + 9) / 5;

– val = 6 + 5 * 4 / 3 * 2;

– sum = sum + 10;

Prec.
Level

Op. Operation Associates

1 [] Array Index L to R

2 +
-

unary plus
unary minus

R to L

3 * /
%

mult, div,
remainder

L to R

4 + - add subtract L to R

5 <<
>>

stream ins.
extract.

L to R

6 < <=
> >=

comparisons L to R

7 = +=
-= *=

...

assignments R to L

See text Appendix 2 for full table.

Order can be forced by parentheses.

22-01-23 7

Brackets

● A statement can be correct, but unreadable:
– result = 1 + 2 / 6 - 1 * 3 / 4 - 3 - -3 * +4;

● Add brackets to make it clear:
– result = 1 + (2 / 6) - (1 * 3 / 4) - 3 - ((-3) * (+4));

22-01-23 8

Expression tree

● Represent res = (-6 + 5 * 4 / (3 * 2)) as a tree:

*

+

*

/

● Operands as leaves.

● Operators as
branching nodes.

● Operations lower in the
tree have..

24 356res

=

-

● Evaluate from the..

● Write values on
internal nodes.

Prec.
Level

Op. Asso.

1 [] L to R

2 unary +
unary -

R to L

3 * /
%

L to R

4 + - L to R

5 <<
>>

L to R

6 < <=
> >=

L to R

7 = +=
-= *= ...

R to L

22-01-23 9

Review
● Draw an expression tree for the following:

answer = 5 * x + 6 * (1 – x); Assume x=2

Prec.
Level

Op. Asso.

1 [] L to R

2 unary +
unary -

R to L

3 * /
%

L to R

4 + - L to R

5 <<
>>

L to R

6 < <=
> >=

L to R

7 = +=
-= *= ...

R to L

22-01-23 10

Constants

22-01-23 11

Constants

● We have already used literal constants:
int x = 10; // Numeric constant

cout << "Hello world!\n"; // String literal

● Raw number in code are..
int w = d / 7;
int c = s / 72;

● Use named constants like variables:
const int MIN_PER_HOUR = 60;
int h = m / MIN_PER_HOUR;

22-01-23 12

const

● const qualifier makes variable...
const int PAY_PER_DAY = 475;
const int DAYS_PER_WEEK = 7;

– Constants must be given a value when created.

– Name is upper case by..

– Program cannot modify value of a constant:

PAY_PER_DAY = 99999; // ERROR!

● Advantages:
– Program becomes more...

– Can change value in entire program in one spot.
● Ex: change tax rate that's used in 100 calculations!

22-01-23 13

Example with const
// Convert days to weeks/years/fortnights.
// #includes/uses... omitted for space.
const int DAYS_PER_WEEK = 7;
const int DAYS_PER_YEAR = 365;

int main()
{

const int DAYS_PER_FORTNIGHT = 14;

cout << "Enter # days: ";
int numDays = 0;
cin >> numDays;

int numWeeks = numDays / DAYS_PER_WEEK;
int numYears = numDays / DAYS_PER_YEAR;
int numFortnight = numDays / DAYS_PER_FORTNIGHT;

cout << "# Days: " << setw(4) << numDays << endl;
cout << "# Weeks: " << setw(4) << numWeeks << endl;
cout << "# Years: " << setw(4) << numYears << endl;
cout << "# Fortnights: " << setw(4) << numFortnight << endl;

}

Enter # days: 4641

Days: 4641

Weeks: 663

Fortnights: 331

= daysPer.cpp

Constants can be..Constants can be..

22-01-23 14

Guide to Constants

● Which of the following literal constants would be
best made into named constants?

– int numStudents = 0;

– int next = numStudents + 1;

– int waitlist = numStudents – 72;

22-01-23 15

Combined Assignments
& Overflow

22-01-23 16

..

Assignment Operators

● Combine an operation with assignment:
– +=, -=, *=, /=, %=

● Examples:
– a += b;

// means a = a + b;

– a *= b;
// means a = a * b;

– a /= 2 + 3;
// means...

const int MAX_COUNT = 10;
int main()
{

int sum = 0;
int i = 0;
while (i < MAX_COUNT) {

sum += i;
i++;

}
cout << "Sum from 0 to "

<< MAX_COUNT - 1
<< " = " << sum << endl;

}

22-01-23 17

Overflow & Underflow

● Each type has a maximum value it can store.
– Maximum + 1 overflows to the most negative.

– Minimum – 1 underflows to the most positive.

Test starts out at: 2147483647

Adding one gives us: -2147483648

Now subtracting 1: 2147483647

// Work with overflow/underflow
#include <iostream>
#include <climits>
using namespace std;
int main()
{

int test = INT_MAX;
cout << "Test starts out at: " << test << endl;
test += 1;
cout << "Adding one gives us: " << test << endl;
test -= 1;
cout << "Now subtracting 1: " << test << endl;

}

= over_underflow.cpp

#include <climits>..

INT_MAX, INT_MIN,
CHAR_MAX, CHAR_MIN,

....

..

22-01-23 18

Suggested Review Questions

● Draw an expression tree for the following:
result = 8 * - 1 + 3 / 2

– Solve it by writing values on the nodes.

– Write a C++ program to double check your answer.

22-01-23 19

Summary

● Expressions calculate values using operators.
– Operator precedence gives us expression trees.

● Use named constants (const), not magic numbers.

● Combined assignment operators like x += 2;

