Expressions

Chapter 2.3 (part) Slides #4

$$6-1\times0+2\div2=7$$

ANSWER

Topics

- 1) How can we calculate values?
- 2) What's the best way to work with values like 3600?

Math Expressions

(And not like "Wow! Math is great!")

Expressions

- Expression:
 - A statement that...
 - Usually has an operator.
- Examples:

```
result = 3;
result = x * 2;
result = 1 * x + 2;
```

- Expressions usable anywhere a value is needed:
 - cout << "Big number " << (1 + 2) << endl;</pre>

Order of Operations

- What is the value of result?
 int result = 4 + 10 / 2;
 - Is it 7 or 9? (4 + 10) / 2 or 4 + (10 / 2)
- Each operator is given a precedence:
 - Higher precedence operators are applied first.
 - / is higher than +, so the answer is...
 - Add brackets to force an ordering.
- Associativity:
 - Apply the operators from right-to-left, or left-to-right?
 - +, are left to right: do the one on the..
 - =, += are right to left: do the one on the...

Operator precedence

Operators at same

evaluated based on associativity.

- * and / from L to R
- = and += from R to L
- Examples:
 - result = -20 + 9 / 5;
 - result = (-20 + 9) / 5;
 - val = 6 + 5 * 4 / 3 * 2;
 - sum = sum + 10;

Prec. Level	Op.	Operation	Associates
1	[]	Array Index	L to R
2	+	unary plus unary minus	R to L
3	* / %	mult, div, remainder	L to R
4	+ -	add subtract	L to R
5	<< >>	stream ins. extract.	L to R
6	< <= > >=	comparisons	L to R
7	= += -= *= 	assignments	R to L

Order can be forced by parentheses. See text Appendix 2 for full table.

Brackets

- A statement can be correct, but unreadable:
 - result = 1 + 2 / 6 1 * 3 / 4 3 -3 * +4;
- Add brackets to make it clear:
 - result = 1 + (2 / 6) (1 * 3 / 4) 3 ((-3) * (+4));

Expression tree

Represent res = (-6 + 5 * 4 / (3 * 2)) as a tree:

- Operands as leaves.
- Operators as branching nodes.
- Operations lower in the tree have...

- Evaluate from the...
- Write values on internal nodes.

Prec.

Level

Op.

Asso.

Review

Draw an expression tree for the following: answer = 5 * x + 6 * (1 - x);Assume x=2

unary -3 % 4

Op.

[]

unary +

<< >>

< <= > >=

Prec.

Level

1

6

L to R L to R R to L -= *= ...

Asso.

L to R

R to L

L to R

L to R

Constants

Constants

We have already used literal constants:
 int x = 10;
 // Numeric constant
 cout << "Hello world!\n"; // String literal

Raw number in code are...

```
int w = d / 7;
int c = s / 72;
```

Use named constants like variables:

```
const int MIN_PER_HOUR = 60;
int h = m / MIN_PER_HOUR;
```

const

- const qualifier makes variable...
 const int PAY_PER_DAY = 475;
 const int DAYS PER WEEK = 7;
 - Constants must be given a value when created.
 - Name is upper case by...
 - Program cannot modify value of a constant:PAY PER DAY = 99999; // ERROR!
- Advantages:
 - Program becomes more...
 - Can change value in entire program in one spot.
 - Ex: change tax rate that's used in 100 calculations!

Example with const

```
// Convert days to weeks/years/fortnights.
// #includes/uses... omitted for space.
const int DAYS PER WEEK = 7;
                                                             Constants can be...
const int DAYS PER YEAR = 365;
int main()
    const int DAYS_PER_FORTNIGHT = 14;
    cout << "Enter # days: ";</pre>
    int numDays = 0;
    cin >> numDays;
    int numWeeks = numDays / DAYS_PER_WEEK;
    int numYears = numDays / DAYS PER YEAR;
    int numFortnight = numDays / DAYS PER FORTNIGHT;
    cout << "# Days:
                       " << setw(4) << numDays << endl;
    cout << "# Weeks: " << setw(4) << numWeeks << endl;</pre>
                       " << setw(4) << numYears << endl;
    cout << "# Years:
    cout << "# Fortnights: " << setw(4) << numFortnight << endl;</pre>
```

```
Enter # days: 4641
             4641
# Days:
 Weeks:
             663
 Fortnights:
              331
```

Guide to Constants

- Which of the following literal constants would be best made into named constants?
 - int numStudents = 0;

- int next = numStudents + 1;

int waitlist = numStudents – 72;

 1

Combined Assignments & Overflow

Assignment Operators

Combine an operation with assignment:

```
- +=, -=, *=, /<del>=</del>, %=
```

Examples:

```
a += b;
// means a = a + b;
a *= b;
// means a = a * b;
a /= 2 + 3;
// means...
```

```
const int MAX COUNT = 10;
int main()
   int sum = 0;
   int i = 0;
   while (i < MAX COUNT) {
       sum += i;
       j++;
   cout << "Sum from 0 to "
          << MAX COUNT - 1
          << " = " << sum << endl;
```

Overflow & Underflow

- Each type has a maximum value it can store.
 - Maximum + 1 overflows to the most negative.
 - Minimum 1 underflows to the most positive.

```
// Work with overflow/underflow
                                  Test starts out at: 2147483647
#include <iostream>
                                 Adding one gives us: -2147483648
#include <climits>
                                 Now subtracting 1:
                                                             2147483647
using namespace std;
int main()
                                                         #include <climits>...
    int test = INT MAX;
    cout << "Test starts out at: " << test << endl;
   test += 1:
                                                        INT MAX, INT MIN,
                                                      CHAR MAX, CHAR MIN,
    cout << "Adding one gives us: " << test << endl;</pre>
    test -= 1;
    cout << "Now subtracting 1: " << test << endl;</pre>
```

Suggested Review Questions

- Draw an expression tree for the following:
 result = 8 * 1 + 3 / 2
 - Solve it by writing values on the nodes.
 - Write a C++ program to double check your answer.

Summary

- Expressions calculate values using operators.
 - Operator precedence gives us expression trees.
- Use named constants (const), not magic numbers.
- Combined assignment operators like x += 2;