
22-04-03 1

Recursion
Ch9 (functions):
p320-327

CMPT 130

© Dr. B. Fraser

Moebius Battle
www.xkcd.com

22-04-03 2

Topics

Recursive:

1) Thinking

2) Programming

3) Problems & Design

22-04-03 3

Recursive Thinking

22-04-03 4

Recursion Jokes

● Recursion is when..
– For more information than shown here,..

● GNU (makers of the GCC compiler):
– “GNU” = GNU is Not Unix

● “Joke”:
– Knock Knock.

– Who's there?

– Knock.

– Knock Who?

– Knock Knock.

22-04-03 5

Example: Factorial

● Math is full of recursion.

● n Factorial (n!):
– 1! = 1

– n! = n * (n-1) * (n-2) * ... * 2 * 1

● Example:
– 3! = 3 * 2 * 1 = 6

– 5! = 5 * 4 * 3 * 2 * 1 = 120

– 20! = = 2,432,902,008,176,640,000

● n! Recursive definition:
– Base case:..

– Recursive Definition:..

22-04-03 6

n!

int factorial (int n) {
// Base case:
if (n == 1) {

return 1;
}

// Recursive step:
return n * factorial(n-1);

}

factorial(n=1)
return 1

factorial(n=2)
return 2 * factorial(1)

factorial(n=3)
return 3 * factorial(2)

main {
 factorial(3);
}

Non recursive step in the
algorithm

Call the function on a smaller but..

22-04-03 7

Recursive Programming

22-04-03 8

Sum Numbers 1 To n

● Recursive definitions can often be..

// Sum the values from 1 through n:
int sum (int n) {

// Base case:
if (n == 1) {

return 1;
}

// Recursive step:
return n + sum(n-1);

}

sum(n=1)
return 1

sum(n=2)
return 2 * sum(1)

sum(n=3)
return 3 + sum(2)

main {
 sum(3);
}

22-04-03 9

Recursion vs Iteration

● All recursive problems can be solved by iteration.

● Why use recursion?
– Recursion often more elegant.

– Recursion can be faster (some cases)

● Ex: With trees recursion may be much faster.

– Recursion can be inefficient (extra function calls).

● If performance really matters, write it both ways and time it.
http://www.ahmadsoft.org/articles/recursion/index.html

22-04-03 10

Stack Overflow

● https://stackoverflow.com/

● What is a stack overflow?
– Every recursive call is a separate function call

● And requires its own stack frame

– Stack memory is finite

● As is any other memory

– Repeated recursive calls may exhaust the stack

● Some algorithms are very unlikely to result in stack overflow
– Recursive binary search – OK

– Recursive linear search – not so good

22-04-03 11

Practice

● Write recursive function for the following:

– Binary Search.

● What’s the base case?

● What’s the recursive case?

– Fibonacci Number Sequence:
Sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

● Sequence definition:
fib(0) = 0
fib(1) = 1
fib(n) = fib(n-2) + fib(n-1)

22-04-03 12

Review

● What do the following functions do?

bool guess1(int n)
{

if (n == 0) {
return true;

}
return !guess1(n-1);

}

Test Output:
guess1(0) = true
guess1(1) = false
guess1(2) = true
guess1(3) = false
guess1(4) = true
guess1(5) = false

Test Output:
guess2((int[]){1, 2, 3}, 3) = 6
guess2((int[]){10, 5, 30, 100, 0, 1}, 6) = 146

int guess2(int data[], int size)
{

if (size == 1) {
return data[0];

}
return data[size - 1]

+ guess2(data, size -1);
}

22-04-03 13

Summary

● Recursion is a powerful way of thinking about problems.

● Recursive methods call themselves:
– Base case can be solved trivially.

– Recursive case reduces the problem, then calls itself.

● Recursive Examples:
– n!

– Fibonacci

