
22-03-27 1

Slides #19

Searching
CMPT 130 © Dr. B. Fraserhttps://www.dailymoss.com/25-hilarious-wheres-waldo-jokes-will-make-rofl/

22-03-27 2

Topics

1) How can we search for an element in a vector or
array?

a) Linear Search – Just keep looking!

b) Binary Search – I’m thinking of a number between
1 and 100....

22-03-27 3

Searching

● Searching involves...
in a collection of items.

– Ex: “Find the number 25 in the collection”

– or sometimes: “Is the number 25 in the collection?”

– and commonly: “Find Bob's phone number.”

● Definitions:
– Target element:

– Search pool:

22-03-27 4

About searching

● There are many search algorithms.
– Generally, we want the one which finds the

element..

● A search can result in:
– Finding the target element in the search pool

(and returning its index), or

– Proving that the target element is...

22-03-27 5

Linear search

● Linear search:
–

until have found the target element or
have examined all elements.

● It's “linear” search because:
– start with the first element and..

to the last element.

22-03-27 6

Linear search example

● Given the following search pool:
Val: 8 19 71 5 16 27 38 40 0 56 26 10 24 30

● Use linear search to find the following (count comparisons):

16 8 28

22-03-27 7

Linear search
// Find the index of the target element.
// data: Elements to search.
// size: Number of elements in data[]
// target: Value to find.
// returns: Index of target; -1 for not found.

int linearSearch (int data[], int size, int target)
{

// Cycle through all elements
for (int index = 0; index < size; index ++) {

// When we find the item, return it's index.
if (data[index] == target) {

return index;
}

}
// Item not found:
return -1;

}

int main() {
const int N = 5;
int myData[] = {5, 10, 1, 18, 3};

int pos = linearSearch(myData, N, 18);
cout << "Index " << pos << endl;
...

22-03-27 8

Binary search introduction

● Idea:
– Each comparison...

● Similar to how to play "guess the number [1...100]".
– Guess 50, it's less than that: [1 ... 49]

– Guess 25, it's more than that: [26 ... 49]

– Guess 37, it's less than that: [26 ... 36]

– Guess 31, it's less than that: [26 ... 30]

– Guess 28, it's more than that: [29 ... 30]

– Guess 30, it's less that that: Answer is 29!

● Limitation:
– Binary search works on...

22-03-27 9

Binary search description

● Binary search works as follows:
– Start by looking at the middle element of the search

pool.

● If it's equal to the target, you are done!

● If mid-element is less than the target...

● If mid-element is greater than the target...

– Repeat the above until:

● You've found the element; or

● There are...

22-03-27 10

Binary search example

● Given the following search pool:
Idx: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Val: 0 5 8 10 16 19 24 26 27 30 38 40 56 71

● Use binary search to find the following (count comparisons):
56 0 28

Middle Formula:
(min + max) / 2

22-03-27 11

int binarySearch (int data[], int size, int target)
{

int min=0, max=size-1, mid=0;
// Narrow in the [min, max] bounds
while (min <= max) {

mid = (min+max) / 2;
if (data[mid] == target) {

return mid;
} else {

if (target < data[mid]) {
max = mid-1;

} else {
min = mid+1;

}
}

}
return -1; // Not found, return -1.

}

Binary search code

int main() {
const int N = 5;
int myData[] = {1, 3, 5, 10, 18};

int pos = binarySearch(myData, N, 18);
cout << "Index " << pos << endl;
...

22-03-27 12

Linear vs binary search

● Comparisons: Which search ___?
– Requires a sorted list:..

– Slower (on average):..

– Easier to understand, implement and debug...

● Algorithm Selection:
– If it's easy to keep the data sorted or

you'll be searching a lot, use binary search.

– Otherwise, linear search may be better.

22-03-27 13

Review

● Fill in the following table for number of comparisons
required to find elements in the following list.

2 5 7 8 11

Linear Search Binary Search

Find 7

Find 11

Find 6

22-03-27 14

Summary

● Searching and Sorting are two classic computing
science problems.

● Searching:
– Linear: Look at each element to find item.

– Binary: Look half way through sorted list to find
which half target element could be in.

