
22-03-27 1

Arrays and
Dynamic Memory

Readings Topics:
Pointers
Arrays (some)
Dynamic Memory

Dr. Donaldson’s notes: http://www.cs.sfu.ca/CourseCentral/130/tjd/chp9notes.html

© Dr. B. FraserSlides #18CMPT 130

Suggest reading
text if possible.

Material is more
advanced.

22-03-27 2

Topics

1) How can we store many elements
(without a vector)?

2) How can we get and manage extra memory?

22-03-27 3

Arrays

● Array Declaration:
– Specify type of elements, and # elements.

int daysPerMonth[12];
– Arrays are quite similar to vectors, but can be

faster, and once created..

● Directly access an element:
– For N elements use indices 0 to N-1
– daysPerMonth[0] = 31; // January

● Ex:
– daysPerMonth[11] = 31; // December
– int a = daysPerMonth[1]; // February
– cout << daysPerMonth[1]; // Outputs 28
– cin >> daysPerMonth[9]; // Read in oct.

Idx Val

Jan 0 31

Feb 1 28

Mar 2 31

Apr 3 30

May 4 31

Jun 5 30

Jul 6 31

Aug 7 31

Sep 8 30

Oct 9 31

Nov 10 30

Dec 11 31

Array
daysPerMonth

22-03-27 4

#include <iostream>
#include <iomanip>
using namespace std;
int main() {

// Create the arrays for day names and hours per day.
const int DAYS_PER_WEEK = 7;
float hoursWorked[DAYS_PER_WEEK];

// Ask user for time worked.
for (int i = 0; i < DAYS_PER_WEEK; i++) {

cout << "Hours worked on day " << i << ": ";
cin >> hoursWorked[i];

}

// Calculate total hours
cout << "Week summary:\n";
cout << fixed << setprecision(1);
float totalHours = 0;
for (int i = 0; i < DAYS_PER_WEEK; i++) {

cout << i << " = " << hoursWorked[i] << " hours.\n";
totalHours += hoursWorked[i];

}
cout << "Total hours: " << totalHours << endl;

}

Array example

Hours worked on day 0: 0

Hours worked on day 1: 1.5

Hours worked on day 2: 26.9

Hours worked on day 3: 8.2

Hours worked on day 4: 1.6

Hours worked on day 5: 0

Hours worked on day 6: 1

Week summary:

0 = 0.0 hours.

1 = 1.5 hours.

2 = 26.9 hours.

3 = 8.2 hours.

4 = 1.6 hours.

5 = 0.0 hours.

6 = 1.0 hours.

Total hours: 39.2

= hoursWorked.cpp

22-03-27 5

In-Class Example

● Write a program which:
– reads up to 10 floats from the keyboard

– but which stops when the user enters a 0.
(Called a sentinel: a value which marks the end)

● It must then:
– display the values to the screen

(Solution next slide)

22-03-27 6

#include <iostream>
using namespace std;
int main()
{

// Create the array
const int MAX_SIZE = 10;
float data[MAX_SIZE];

// Populate the array
cout << "Enter up to " << MAX_SIZE

<< " values (0 to exit):\n";
int count = 0;
for(count = 0; count < MAX_SIZE; count++) {

// Get the next value
float newValue = 0;
cin >> newValue;

// Are we done?
if (newValue == 0) {

break;
}

// Store in array:
data[count] = newValue;

}

Possible solution

Enter up to 10 values (0 to exit):
10

15.112

20.222

0

Data:
0: 10
1: 15.112
2: 20.222

= arrayEntrySentinel.cpp

// Print out all the values:
cout << "\nData:\n";
for (int i = 0; i < count; i++) {

cout << i << ": "
<< data[i] << endl;

}
}

Continued

22-03-27 7

.. ..

..

Passing a full array

● Need two things to pass an array to a function:

void showAllElements(char arr[], int size) {
cout << "Displaying all elements:\n";
for (int i = 0; i < size; i++) {

cout << arr[i] << " ";
}
cout << endl;

}

int main () {
const int N = 5;
char myArray[] =

{'H', 'e', 'l', 'l', 'o'};

// Pass the whole array.
showAllElements(myArray, N);
...

}

Function can handle
 any size of array.

Must tell it the size
of the array
separately.

When calling, pass in the
array (no []!), and size.

Display all elements:
H e l l o

passArray.cpp

22-03-27 8

Pass array by Pointer

● Passing an array to a function passes..

– It is not a copy of the array:
it is the address of the real thing.

–

void zAllElements(char arr[], int size) {
for (int i = 0; i < size; i++) {

arr[i] = 'z';
}

}

int main () {
const int N = 5;
char myArray[] =

{'H', 'e', 'l', 'l', 'o'};

// Pass the whole array.
zAllElements(myArray, N);
showAllElements(myArray, N);
...

} passArray.cpp

22-03-27 9

Arrays and Pointers
● Arrays & pointers are similar:

– Array names can be..

– Pointers can be..

int costs[] = {0, 10, 20, 30, 40};
int *pValue = costs; //..

cout << "Array: " << costs << endl;
cout << "Pointer: " << pValue << endl;

cout << "costs[0]: " << costs[0] << endl;
cout << "*costs: " << *costs << endl;

cout << "pValue[0]:" << pValue[0] << endl;
cout << "*pValue: " << *pValue << endl;

for (int i = 0; i < 5; i++) {
cout << pValue[i] << ", ";

}

PValue[0]: 0

*pValue: 0

0, 10, 20, 30, 40,

costs[0]: 0

*costs: 0

Array: 0x7fff87968010

Pointer: 0x7fff87968010

22-03-27 10

Arrays vs Vectors
● Arrays and Vectors have a similar purpose:..

– Many problems which could be solved with one can also
be solved with the other.

Array Vector

Data Type Fundamental type to C++
(and C) language

A class in the C++ standard library
(“using namespace std;”)

Change Size? Fixed size Dynamically resizes

Code to create int myArray[10]; vector<int> myVect;

Set element myArray[0] = 42; myVect.at(0) =42 or
myVect[0] = 42

Add extra element Impossible myVect.push_back(101);

Access element cout << myArray[0]; cout << myVect.at(0);
cout << myVect[0];

Ask it for its size Impossible cout << myVect.size();

Pass to function Pass as a pointer (array) By value, by ref, or by pointer

22-03-27 11

Dynamic Memory

Why do we need this?
Doesn’t vector do everything we need?

Vector’s great! However...
- There’s more to software development than vector
- Vector had to be implemented using something!

22-03-27 12

Memory

● Code Storage
– Also called "text"

– Stores the..

● Data Storage
– Stores the..

– Types: Static, Dynamic, Automatic.

● Static Memory
– Holds..

– Values initialized when program starts.

Code Storage

Data
Storage

RAM

Automatic
(Stack)

Static

Dynamic
(Heap)

22-03-27 13

Memory: Automatic

● Automatic Storage
– Local variables allocated..

– When function exits, it pops its local
variables off the stack..

● Space reused for next function call.

– Calling a huge number of functions will
overflow the stack (crash the program).

Example: Bad Recursion
void crashProgam() {

crashProgram();
}

Code Storage

Automatic
(Stack)

Static

Dynamic
(Heap)

RAM

A function that ..

22-03-27 14

Returning a new array

● How can a function return a new array?
– You can't return an array, but you can return a pointer

– Here's the first (bad) try!

float* makeArrayOfNumbers(int size) {
float arr[size];

for (int i = 0; i < size; i++) {
arr[i] = i;

}
displayArray(arr, size);
return arr;

}

void displayArray(float arr[], int size) {
for (int i = 0; i < size; i++) {

cout << arr[i] << " ";
}
cout << endl;

}

int main() {
const int SIZE = 5;
float *myArr =
 makeArrayOfNumbers(SIZE);
displayArray(myArr, SIZE);

}0 1 2 3 4
0 4.59163e-41 0 0 0

22-03-27 15

What went wrong?

● Never..
– Local variables are popped off the stack when the

function finishes.

– All pointers to popped-locals become..

● How can we get some memory which is not on the
stack?

– So it will not be popped when the function exits?

float* badIdea(int size) {
float arr[size];
// ...
return arr;

}

22-03-27 16

Memory: Dynamic

● Dynamic Storage
– Allows for:

●

● gives program control over..

– Allocate using..
Deallocate using..

– In separate memory region..

Code Storage

Automatic
(Stack)

Static

Dynamic
(Heap)

RAM

What would happen if we
"dynamically" allocated on the

stack instead?

22-03-27 17

Dynamic Arrays

● Use dynamic
allocation to
create an array in
the heap.

● Return a pointer
to this array.

● Use the array like
a normal array.

● Later, we must
free the memory
using delete.

void displayArray(float arr[], int size);

float* makeDynamicArray(int size)
{

float *arr = new float[size];
for (int i = 0; i < size; i++) {

arr[i] = i;
}
displayArray(arr, size);
return arr;

}

int main()
{

float *myArr = makeDynamicArray(SIZE);
displayArray(myArr, SIZE);
delete[] myArr;

}

..

..

..

..

22-03-27 18

Dynamic Allocation

● new
double *heightArr = new double[100];

– new allocates space from heap.

–

● delete
delete[] heightArr;

– delete releases (frees) memory.

– Must free memory..

● Can only free it once!

22-03-27 19

Returning allocated space

int* getRandArray(int n)
{

// Allocate space
int* pArr = new int[n];

// Initialize data
for (int i = 0; i < n; i++) {

pArr[i] = rand() % 100 + 1;
}

return pArr;
}

int main()
{

const int SIZE = 10;

// Get the array of data
int* pData = getRandArray(SIZE);

// Use the allocated memory
cout << "Data: ";
for (int i = 0; i < SIZE; i++) {

cout << pData[i] << " ";
}
cout << endl;

// Free the memory to
// avoid memory leaks.
delete[] pData;
pData = nullptr;

}
= useNew.cpp

22-03-27 20

Pointers

● Pointers:
– Pointers are often allocated..

● Pointer destroyed when it goes out of scope.

● When pointer destroyed, data it points to..

● Dynamic Array
– Allocated on the heap, pointed to by a pointer.

– Must call delete[] on the dynamic array regardless of
when pointers are destroyed.

22-03-27 21

Summary

● Arrays are like vectors, but you manage the memory.
– Arrays are pointers; pointers are arrays.

● Dynamic memory
– Use new to allocate array on heap;

– Use delete[] to free the memory.

