
22-03-06 1

Vectors
Slides #13 – Chapter 8.3
CMPT 130 © Dr. B. Fraser

int studentId00 = 9000;
int studentId01 = 9001;
int studentId02 = 9002;
int studentId03 = 9003;
int studentId04 = 9004;
int studentId05 = 9005;
int studentId06 = 9006;
int studentId07 = 9007;
int studentId08 = 9008;
int studentId09 = 9009;
int studentId10 = 9010;
int studentId11 = 9011;
int studentId12 = 9012;
int studentId13 = 9013;
int studentId14 = 9014;
int studentId15 = 9015;
int studentId16 = 9016;
int studentId17 = 9017;
int studentId18 = 9018;
int studentId19 = 9019;

int studentId20 = 9020;
int studentId21 = 9021;
int studentId22 = 9022;
int studentId23 = 9023;
int studentId24 = 9024;
int studentId25 = 9025;
int studentId26 = 9026;
int studentId27 = 9027;
int studentId28 = 9028;
int studentId29 = 9029;
int studentId30 = 9030;
int studentId31 = 9031;
int studentId32 = 9032;
int studentId33 = 9033;
int studentId34 = 9034;
int studentId35 = 9035;
int studentId36 = 9036;
int studentId37 = 9037;
int studentId38 = 9038;
int studentId39 = 9039;

int studentId40 = 9040;
int studentId41 = 9041;
int studentId42 = 9042;
int studentId43 = 9043;
int studentId44 = 9044;
int studentId45 = 9045;
int studentId46 = 9046;
int studentId47 = 9047;
int studentId48 = 9048;
int studentId49 = 9049;
int studentId50 = 9050;
int studentId51 = 9051;
int studentId52 = 9052;
int studentId53 = 9053;
int studentId54 = 9054;
int studentId55 = 9055;
int studentId56 = 9056;
int studentId57 = 9057;
int studentId58 = 9058;
int studentId59 = 9059;

int studentId60 = 9060;
int studentId61 = 9061;
int studentId62 = 9062;
int studentId63 = 9063;
int studentId64 = 9064;
int studentId65 = 9065;
int studentId66 = 9066;
int studentId67 = 9067;
int studentId68 = 9068;
int studentId68 = 9069;
int studentId70 = 9070;
int studentId71 = 9071;
int studentId72 = 9072;
int studentId73 = 9073;
int studentId74 = 9074;
int studentId75 = 9075;
int studentId76 = 9076;
int studentId77 = 9077;
int studentId78 = 9078;
int studentId79 = 9079;

I figured out how to
store 80 student

numbers!!!!

22-03-06 2

Topics

1) How can we store many values at once?

2) How can we pass vectors to functions?

3) How can we copy/compare vectors?

22-03-06 3

Vectors
Part 1

How to store many values?

22-03-06 4

Vector

● Vector Object:
–

– Can dynamically grow and shrink, and report its size.

0 1 2 3

20 5 2 8prices =

22-03-06 5

#include <iostream>
#include <vector>
using namespace std;

int main() {
 // Create a vector of double
 vector<double> myFavNums;

 // Insert my favourite numbers
 myFavNums.push_back(42);
 myFavNums.push_back(-2.5);
 myFavNums.push_back(3.141590000);

 // Print out the three numbers
 cout << "Num 1: " << myFavNums.at(0) << endl;
 cout << "Num 2: " << myFavNums.at(1) << endl;
 cout << "Num 3: " << myFavNums.at(2) << endl;

 return 0;
}

Vector example
Must include <vector> and

name-space std.

When created, must specify
type of values it will hold:..

Add an element to the
vector with:..

Use .at(n) to access
element n. Ex:

double k = data.at(i);

= simpleVector.cpp

Num 1: 42
Num 2: -2.5
Num 3: 3.14159

22-03-06 6

Vectors

● Vector is in the Standard Template Library (STL):
– STL is programmer-created data types and

algorithms (not part of 'core' C++).

– It is a template class:
It can be used to hold...

● Specify type of data to hold when creating vector:
vector<int> ages;

vector<double> heights;

vector<string> names;

vector<char> firstInitials;

22-03-06 7

#include <iostream>
#include <vector>
using namespace std;
int main() {
 // Option #1:..

 vector<int> prices;
 prices.push_back(20);
 prices.push_back(5);

}

Initializing a Vector

= vectorInitializer.cpp

For Loop Generates a Warning:
“Comparison between signed and unsigned”

Explanation: myVector.size() is unsigned.
Fix: for (unsigned int i = 0; i < myVector.size; i++) {...}

// Option #2:..

vector<int> daysPerMonth {31, 28, 31, 30, 31, 30, 31,
 31, 30, 31, 30, 31};

// Display all values (explanation coming on next slide!)
for (int i = 0; i < daysPerMonth.size(); i++) {
 cout << i << ": " << daysPerMonth.at(i) << endl;
}

22-03-06 8

Vector Element Access

● Direct access to any element:
– For N elements...

daysPerMonth.at(0) = 31; // January

Pronounced...

● Ex:

daysPerMonth.at(11) = 31; // December

int a = daysPerMonth.at(1); // February

int guess = daysPerMonth.at(i + 1); // Depends on i.

cout << daysPerMonth.at(1); // Outputs 28

cin >> daysPerMonth.at(9); // Read in oct.

Idx Val

Jan 0 31

Feb 1 28

Mar 2 31

Apr 3 30

May 4 31

Jun 5 30

Jul 6 31

Aug 7 31

Sep 8 30

Oct 9 31

Nov 10 30

Dec 11 31

Vector object
daysPerMonth

22-03-06 9

Vector Indices vs Values

● An element's value and its index are different:
vector<int> prices {1, 5, 12, 20};

– Add 2 elements:
int a = prices.at(1) + prices.at(2);//

– Add 2 indices:
int b =prices.at(1 + 2); //

0 1 2 3

1 5 12 20prices =

22-03-06 10

Vector methods

Function Description

myVect.at(i)

or use:
myVect[i]

Access the i'th element of myVect
(where i is an integer)
Ex: int val = myVect.at(i);
Ex: myVect.at(i) = 77;

myVect.clear() Removes all elements from the vector.

myVect.empty() Returns true if the vector is empty, false
otherwise.

myVect.pop_back() Removes the last element from the vector.

myVect.push_back(42) Adds the number 42 to the end of the vector.
The value must match vector type.

myVect.size()

.at(i) vs [i] are similar; however .at(i) is safer (more later).
See text or online documentation for more vector methods and constructors.

22-03-06 11

int main() {
 const int DAYS_PER_WEEK = 7;
 // Create the vector for hours per day.
 vector<float> hoursWorked;

 // Ask user for time worked.
 for (int i = 0; i < DAYS_PER_WEEK; i++) {
 cout << "Hrs worked on day #" << i << ": ";
 float hours = 0;
 cin >> hours;
 hoursWorked.push_back(hours);
 }

 // Calculate total hours
 cout << "Week summary:\n";
 float totalHours = 0;
 for (int i = 0; i < DAYS_PER_WEEK; i++) {
 cout << fixed << setprecision(2);
 cout << "\t " << i << " = " << setw(5) << hoursWorked.at(i) << " hours\n";
 totalHours += hoursWorked.at(i);
 }
 cout << "Total hours: " << totalHours << endl;
}

Vector example: Hours worked
Hrs worked on day #0: 0

Hrs worked on day #1: 1.5

Hrs worked on day #2: 26.9

Hrs worked on day #3: 8.2

Hrs worked on day #4: 1.6

Hrs worked on day #5: 0

Hrs worked on day #6: 0

Week summary:

 0 = 0.00 hours

 1 = 1.50 hours

 2 = 26.90 hours

 3 = 8.20 hours

 4 = 1.60 hours

 5 = 0.00 hours

 6 = 0.00 hours

Total hours: 38.20

= hoursWorked.cpp

22-03-06 12

Suggested Exercise

● Change the hoursWorked:
– When reading in hours worked,

display the day name (hint
Vector!)

– Stop reading in values when the
user enters -1.

● Additional
– Calculate max # hours on a day.

Or, find the day which has max
hours worked.

Hours worked on Sunday: 0

Hours worked on Monday: 8.2

Hours worked on Tuesday: 5

Hours worked on Wednesday: -4

Hours worked on Thursday: -1

Week summary:

 Sunday = 0.00 hours

 Monday = 8.20 hours

 Tuesday = 5.00 hours

 Wednesday = -4.00 hours

Total hours: 9.20

Max hours in single day: 8.20

! hoursWorked_InClass.cpp

22-03-06 13

Review

● Write some code which creates a vector to hold
characters and insert the first 2 letters of your name.

● Write a loop to output the contents of the above
vector. Do not hardcode the size!

22-03-06 14

Vectors
Part 2

Passing vectors to functions
without making a copy!

22-03-06 15

Passing Vector to Function
#include <iostream>
#include <vector>
using namespace std;

void printVector(vector<int> data) {
 for (unsigned int i = 0; i < data.size(); i++) {
 cout << data.at(i) << ", ";
 }
 cout << endl;
}

void doubleVector(vector<int> data) {
 for (unsigned int i = 0; i < data.size(); i++) {
 data.at(i) = 2 * data.at(i);
 }
}

int main() {
 vector<int> salaries {10'000, 20'000, 15'000};

 cout << "Initial pay: ";
 printVector(salaries);

 // Give a big raise!
 doubleVector(salaries);

 cout << "After big raises: ";
 printVector(salaries);
}

Can use ` to separate
digit groups

Initial pay: 10000, 20000, 15000,
After big raises: 10000, 20000, 15000,

Output

giveRaise.cpp

Program does not
(yet) work!

22-03-06 16

Explaining pass by reference

● Reference:
– One variable is an alias of another variable:..

● When using Pass-by-Reference:
function's parameter refers to the actual argument.

– Changing the parameter's value...

Inside calling code.

25

age

Inside the function.

inVal

inVal++;

Operations on inVal
always affect age.

22-03-06 17

void growOlder(int &inVal) {
 inVal++;
}

int main () {
 int age = 25;
 growOlder(age);
 cout << "Age is: " << age << endl;
}

Pass by reference

● To pass-by-reference, put an & between the
parameter's type and name in the parameter list.

– This makes the function's parameter an alias for the
calling argument.

= passByValue.cpp

say: "inVal is a
reference to an int."

Output

22-03-06 18

Passing Vector to Function (Again!)
#include <iostream>
#include <vector>
using namespace std;

void doubleVector(vector<int> &data) {
 for (unsigned int i = 0; i < data.size(); i++) {
 data.at(i) = 2 * data.at(i);
 }
}

void printVector(vector<int> data) {
 for (int val : data) {
 cout << val << ", ";
 }
 cout << endl;
}

int main() {
 vector<int> salaries {10'000, 20'000, 15'000};

 cout << "Initial pay: ";
 printVector(salaries);

 // Give a big raise!
 doubleVector(salaries);

 cout << "After big raises: ";
 printVector(salaries);
}

Initial pay: 10000, 20000, 15000,
After big raises: 20000, 40000, 30000,

Output

giveRaise.cpp

22-03-06 19

Uses for pass-by-reference

● Useful for passing back multiple values:
// Return true if successfully read first and last names.
// Otherwise, return false.
bool readName(string &first, string &last);

● Cautions on Use:
– Use pass-by-value as much as possible!

– Use a return value to pass back a single value.

– Arguments for pass-by-reference...

● Ex:
string a, b;
readName(a, b); // Good
readName("Hello", "World"); // Compile Error.

Example: Write a function to swap the value of 2 int variables.

22-03-06 20

Passing elements

● Single elements of a vector can be passed to
function...

void showChar(char ch) {
cout << "Element: " << ch << endl;

}
void changeChar(char &ch) {

char newVal = 'x';
cout << "Changing " << ch << " to "

<< newVal << "." << endl;
ch = newVal;

}

int main () {
vector<char> greeting {'H', 'i', '!'};

// Pass an element by value.
showChar(greeting.at(0));

// Pass an element by reference.
changeChar(greeting.at(0));
showChar(greeting.at(0));
...

}

22-03-06 21

Passing a whole vector

● You can pass a to a function
using pass by value, or pass by reference.

void changeA(vector<int> data) {
data.push_back(42);

}

void changeB(vector<int> &data) {
data.push_back(1337);

}

int main () {
// Create the vectors
vector<int> ages {10};

// Pass by value example
changeA(ages);

// Pass by reference example
changeB(ages);
...

}

22-03-06 22

Working with Vectors

22-03-06 23

Copy and Compare
#include <iostream>
#include <vector>
using namespace std;

int main() {
vector<double> grades {95.2, 56.1, 4.0, 88.5};

// Copy an existing vector (element by element):
vector<double> copy = grades;

// Check if two have identical elements:
if (grades == copy) {

cout << "Same!" << endl;
} else {

cout << "Not the same!" << endl;
}

}

● Vector “overloads”
= and == to do..

● Makes it easy to
work with!

Sample Output:
Same!

22-03-06 24

Out of Bounds
#include <iostream>
#include <vector>
using namespace std;

int main() {
vector<double> grades {95.2, 56.1, 4.0, 88.5};

// [] lets you..
grades[6] = 12.345;
cout << "Testing out of bounds:" << endl;
for (int i = 0; i < 10; i++) {

cout << i << " = " << grades[i] << endl;
}

// Use grades.at(i) function instead of grades[i]
cout << "Out of bounds execption: " << grades.at(10);
cout << "Done!" << endl;

}
Generates a runtime

error (exception).

Why is this good?

Testing out of bounds:
0 = 95.2
1 = 56.1
2 = 4
3 = 88.5
4 = 0
5 = 2.42092e-322
6 = 12.345
7 = 7.3067e-251
8 = 4.8671e-306
9 = 2.122e-314

terminate called after
throwing an instance of
'std::out_of_range'
 what():
vector::_M_range_check

22-03-06 25

Sample Program

● Write a complete C++ program which:
– Reads in course percentages from the user

(doubles) into a vector.

– Has a function to compute pass/fail grades for each
student (pass = 65% or more)

– Display a table of results like:
#1 82.5% P
#2 59.0% F
...

– Optional: Before displaying, call a function which
clamps all percentages to between [0%, 100%]
(for example, a grade of 103% becomes 100%).

22-03-06 26

Personal Review Questions

● Write a function which returns the largest value stored in
a vector of integers.

– Write a program to test it (different length vectors,
positive and negative numbers).

● Write a function which returns the index of the largest
value stored in a vector of integers.

– Test as before.

22-03-06 27

Summary

● C++ vectors store many items of the same type.
– Can grow & shrink.

● Passing to functions
– Pass by value: passes in a copy.

– Pass by reference: passes in the real variable.

– Can pass whole vector, or just elements.

● Working with Vectors
– Copy and compare with = and ==

– Out of bounds

