Binary & Hex Representation

22-02-14 CMPT 130 Slides #17 © Dr. B. Fraser

How can we store integer values?

Data Types

Data Types

- Humans understand the "type" of data from the meaning of the words:
 - "Hi" word (i.e., a string)
 - 18,537 number
- A computer stores all information as 1's and 0's
 - Both "Hi" and 18,537 are stored as:
 - = 0100 1000 0110 1001 (which is..
 - = 0x4869
 - Computer must know the type of information!

Data Types

- There are a few different types of data:
 - Integers: Whole numbers like 0, -14, 8382.
 - Floating point: Fractional values like -1.1, 3.14
 - Character: A single character like 'h', 'i', '!'
 - String: A sequence of characters like "Hello!"

Understanding Bits, Bytes

- Bit: a single 0 or 1 in binary.
- Given N bits, there are...
 - 3 bits gives 2³ = 8 unique values.
- Byte: 8 bits.
 - How many unique values?

Bit 1	Bit 2	Bit 3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

8 possible values with 3 bits.

Large Sizes

We often work with large collections of bytes.

Abbr	Name	Approx. Size	Exact Size	Example of what you can store
b B	Bit Byte		1 bit 8 bits	Just a 0 or a 1. A character ('a', 'z', '!')
			~4 bytes =	Count of number of people in Canada
kB		Thousand bytes	2 ¹⁰ bytes = 1024	Your resume.
MB		Million bytes	2 ²⁰ bytes	An MP3.
GB		Billion bytes	2 ³⁰ bytes	A movie.
ТВ		Trillion bytes	2 ⁴⁰ bytes	All your pictures, MP3s, and some movies.

Signed Numbers

• Given 2^N different values, how can you represent positive and negative numbers?

Integer Data Types

		Typical Sizes & Range	
	Type	# Bits	Range
	signed char	8 bits	-128 to 127
	short	16 bits	-32,768 to +32,767
	int	32 bits	~ +/- 2 billion
Integers	long	32 bits	~ +/- 2 billion
	long long	64 bits	~ +/- 9 quintillion 9,223,372,036,854,775,807
	(C++ also has unsigned version of each which only do +'ve values. For example, unsigned long is 32 bits with range 0 to \sim 4 billion = 2^{32})		

- Size (# bits) of each value...
 - int could be 16 bits or 32 bits (or something else!)

The size of data types

 The C++ standard does not specify exactly how big each data type must be.

You can..(gives size in bytes)

```
#include <iostream>
using namespace std;
int main()
{
    int height = 6;
    cout << "Size of height:
    cout << "Size of int:
    cout << size of height:
    size of int:
    size of int:
    size of height:
    size of elipht:
    size of height:
    size of int:
    size of elipht:
    size of height:
    size of int:
    size of char:
    size of height:
    size of elipht:
    size of char:
    size of char:
    size of char:
    size of elipht:
    size of elipht:
    size of elipht:
    size of int:
    size of in
```

22-02-14

or a variable (like height)

How does the computer store numbers?

Binary Representation

Storing values

- Computers operate in binary:
 All values are..
 - Digital hardware represents on/off.
 - Use this to store numbers
 - Interpret numbers as text, machine language, music, images, etc.

Base 10

- In base 10, the "place value" is 10 such that the next digits to the left increases in value 10 times
 Count: 1, 2, 3, ... 9, 10, 11, .
- (Trivial) Example
 Express 2513₁₀ in base 10.

```
Place Value
Digits
Value = 2000 + 500 + 10 + 3
= 2513<sub>10</sub>
```

Hexadecimal: Base 16

- Hexadecimal: base 16, "place value" multiplied by 16
 Count: 1, 2, 3, ... 9...
- Writing Notation: "0x" prefix shows value is hex
 int favNum = 0x2a;
- Example: Express 0x2b1a in base 10.

```
Place Value

Digits *2 *b *1 *a

(2) (11) (1) (10)

Value = 2*4096 + 11*256 + 1*16 + 10*1
= 11034<sub>10</sub>
```

Binary: Base 2

- In base 2, the "place value" is worth 2
 - Count:...
 - In C++ version `14, you can write 0b10111001 (Need compiler option -std=c++14)
- Example: Express 1011 1001, in base 10.

Review

• Express 0x121 in decimal.

Express 0110 1011, in decimal

Part 3

16

To convert decimal to binary (or hex),...

Example: Convert 94 to 8-bit binary.

Place Value
$$(128)$$
 (64) (32) (16) (8) (4) (2) (1)

Place Value (27) (26) (25) (24) (23) (22) (21) (20)

Digits (27) (26) (27)

Between Hex and Binary	Hex	Binary
	0x0	0000
	0x1	0001
 Each Hex digit directly 	0x2	0010
	0x3	0011
• Everales: Hey to Binery	0x4	0100
 Examples: Hex to Binary 	0x5	0101
-0x9F =	0x6	0110
- 0xDEAD C0DE =	0x7	0111
	8x0	1000
. Caramanda Dinamada Harr	0x9	1001
 Example Binary to Hex 	0xA	1010
- 1010 0011 0001 0101 ₂	0xB	1011
=	0xC	1100
	0xD	1101
	0xE	1110
	0xF	1111

Review

Convert 50₁₀ to binary.

• Express 0xF28C in binary.

• Express 1011 1010 0100 0000₂ in hex.

Binary Arithmetic and Signed Numbers

Addition

Adding binary just like adding base 10, but...

• Example:

```
101011
+ 001011
=
```

• Overflow: + 001010

Negative Numbers

- How can we make a number negative if we don't have the + or – sign? (just 0's and 1's!)
- Idea 1:
 Make the first bit represent + (1) or (0)

Limitations:

- _ ..
- Special hardware to maintain the sign bit.

Radix Complement

- Motivation: Addition is easier...
 - Easier for hardware to support only addition.
- Complement
 - Complement of X, in base b, with n digits is:...
- Base 10 Example
 - Complement of 24, base 10, 2 digits:

Complement of 24, base 10, 3 digits:

Subtraction

- Replace subtraction with addition: Replace A-B with:..
- Example (Base 10, 2 digits):

```
-55 - 32
= 55 + complement(32)
= 55 + (100 - 32)
= 55 + 68
= 123
```

- Why didn't that work?..
- Change subtraction to finding complement, but that...

2's Complement

Easy way to find 2's complement (base 2):

2)..

Find the 2's complement of:

= = = = = = = = = = = = = = = =			
	5 (4 bits)	31 (8 bits)	127 (8 bits)
Binary			
Inverted Bits			
+1 (Complement)			

Interpretation of bits:..

$$= -2^n 2^{n-1} \dots 2^2 2^1 2^0$$

Negative Numbers

- Computers often use 2's complement notation to represent..
 - Positive numbers written as...
 - Negative numbers written as...
- Possible tasks
 - "Find the 2's complement of X", means...
 - "Express X in 2's complement notation", means
 - if X is positive, just...
 - if X is negative, convert abs(X) to binary, do 2's complement to get negative.

Review

What is the sum of the following (in 16-bit binary)?
 1101 0101 1010 1010
 +0101 0110 1100 1001

What is the <u>2's complement</u> (4 bits) of 3?

Express these in 8-bit <u>2's complement notation</u>:
-86

Addition and Subtraction

Solve the following in 8 bit 2's complement

Complement of 31 (0001 1111)

5 + 5	5 + 5	71 - 31	127 + 6
	0000 0101	0100 0111	0111 1111
+	0000 0101	1110 0001	0000 0110
=			

Overflow for ans=X+Y:
 If X & Y same sign, and ans is opposite sign.

Meaning of Binary Values

- The meaning of bits depends on the representation.
- What is the value of the following as...

Unsigned	Binary Value	Signed
0	000	0
1	001	1
2	010	2
3	011	3
4	100	-4
5	101	-3
6	110	- 2
7	111	-1

Exercise: 2's Complement Subtraction

• Solve (6-2) using 2's complement (4 bit):

• Solve (-3 - 2) using 2's complement (4 bit):

Overflow for ans=X+Y:
 If X & Y same sign, and ans is opposite sign.

Summary

- Understand bits & bytes of variable types.
 - char, short, int, long, long long
- Conversions between base 10, 16, and 2.
 - Easy conversion between hex and binary.
- Negative numbers and 2's complement.
 - Expressing signed numbers.
 - Subtraction using addition.