# Binary & Hex Representation



#### <sup>22-02-14</sup> CMPT 130

Slides #17

#### © Dr. B. Fraser



### How can we store integer values? Data Types

# Data Types

- Humans understand the "type" of data from the meaning of the words:
  - "Hi" word (i.e., a string)
  - 18,537 number
- A computer stores all information as 1's and 0's
   Both "Hi" and 18,537 are stored as:
  - $= 0100 \ 1000 \ 0110 \ 1001 \ \text{(which is..}$ = 0x4869
  - Computer must know the type of information!



Dear human: Do you want me to say "Hi", or print the number 18,537?!?

## Data Types

• There are a few different types of data:

Integers: Whole numbers like 0, -14, 8382.
Floating point: Fractional values like -1.1, 3.14

Character: A single character like 'h', 'i', '!'
String: A sequence of characters like "Hello!"

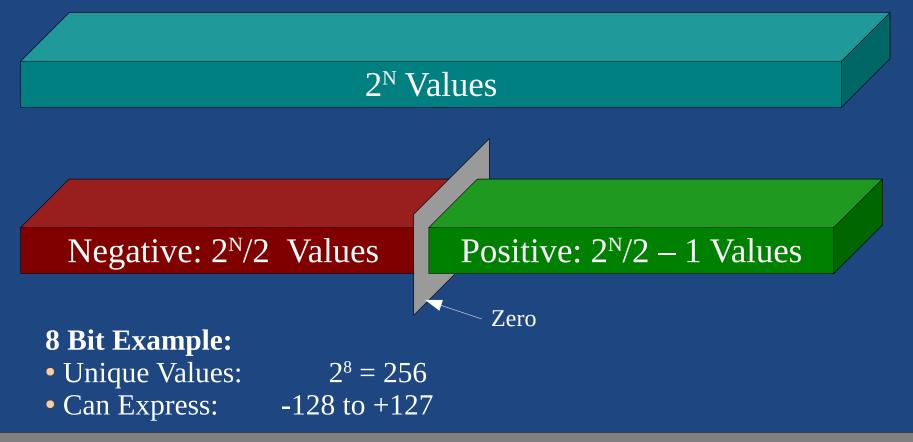
# Understanding Bits, Bytes

- Bit: a single 0 or 1 in binary.
- Given N bits, there are..
  - 3 bits gives 2<sup>3</sup> = 8 unique values.
- Byte: 8 bits.
   How many unique values?

| Bit 1 | Bit 2 | Bit 3 |
|-------|-------|-------|
| 0     | 0     | 0     |
| 0     | 0     | 1     |
| 0     | 1     | 0     |
| 0     | 1     | 1     |
| 1     | 0     | 0     |
| 1     | 0     | 1     |
| 1     | 1     | 0     |
| 1     | 1     | 1     |

8 possible values with 3 bits.

## Large Sizes


#### • We often work with large collections of bytes.

| Abbr | Name | Approx. Size   | Exact Size                      | Example of what you can store             |
|------|------|----------------|---------------------------------|-------------------------------------------|
| b    | Bit  |                | 1 bit                           | Just a 0 or a 1.                          |
| В    | Byte |                | 8 bits                          | A character ('a', 'z', '!')               |
|      |      |                | ~4 bytes =                      | Count of number of people in Canada       |
| kB   |      | Thousand bytes | 2 <sup>10</sup> bytes<br>= 1024 | Your resume.                              |
| MB   |      | Million bytes  | 2 <sup>20</sup> bytes           | An MP3.                                   |
| GB   |      | Billion bytes  | 2 <sup>30</sup> bytes           | A movie.                                  |
| ТВ   |      | Trillion bytes | 2 <sup>40</sup> bytes           | All your pictures, MP3s, and some movies. |

22-02-14 More correctly, "kibibyte" is actually 2<sup>10</sup>, but usually called kilobyte.

## Signed Numbers

 Given 2<sup>N</sup> different values, how can you represent positive and negative numbers?



### Integer Data Types

|          |                                                                                                                                                                 | Typical Sizes & Range |                                                  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|--|
|          | Туре                                                                                                                                                            | # Bits                | Range                                            |  |
| Integers | signed char                                                                                                                                                     | 8 bits                | -128 to 127                                      |  |
|          | short                                                                                                                                                           | 16 bits               | -32,768 to +32,767                               |  |
|          | int                                                                                                                                                             | 32 bits               | ~ +/- 2 billion                                  |  |
|          | long                                                                                                                                                            | 32 bits               | ~ +/- 2 billion                                  |  |
|          | long long                                                                                                                                                       | 64 bits               | ~ +/- 9 quintillion<br>9,223,372,036,854,775,807 |  |
|          | (C++ also has unsigned version of each which only do +'ve values.<br>For example, unsigned long is 32 bits with range 0 to $\sim$ 4 billion = 2 <sup>32</sup> ) |                       |                                                  |  |

• Size (# bits) of each value...

- int could be 16 bits or 32 bits (or something else!)

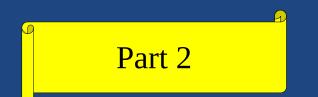
# The size of data types

 The C++ standard does not specify exactly how big each data type must be.

You can..
 (gives size in bytes)

```
#include <iostream>
using namespace std;
int main()
```

```
int height = 6;
cout << "Size of char:\t" << sizeof(char) << endl;
cout << "Size of height:\t" << sizeof(height) << endl;
cout << "Size of int:\t" << sizeof(int) << endl;</pre>
```


sizeof() accepts either
the type (like int or float)
or a variable (like height)

Size of char:

Output:

4

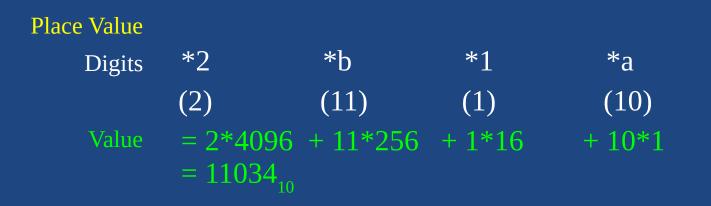
4



#### How does the computer store numbers? Binary Representation

# Storing values

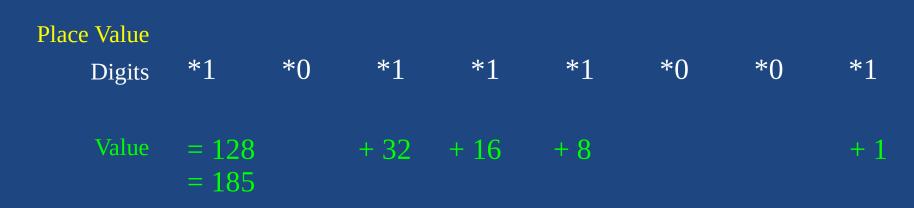
- Computers operate in binary: All values are..
  - Digital hardware represents on/off.
  - Use this to store numbers
  - Interpret numbers as text, machine language, music, images, etc.


### Base 10

- In base 10, the "place value" is 10 such that the next digits to the left increases in value 10 times
   Count: 1, 2, 3, ... 9, 10, 11, .
- (Trivial) Example Express 2513<sub>10</sub> in base 10.

Place Value Digits Value = 2000 + 500 + 10 + 3=  $2513_{10}$ 

### Hexadecimal: Base 16


- Hexadecimal: base 16, "place value" multiplied by 16
  Count: 1, 2, 3, ... 9...
- Writing Notation: "0x" prefix shows value is hex
   int favNum = 0x2a;
- Example: Express 0x2b1a in base 10.



### Binary: Base 2

### • In base 2, the "place value" is worth 2

- Count:..
- In C++ version `14, you can write 0b10111001 (Need compiler option -std=c++14)
- Example: Express 1011 1001<sub>2</sub> in base 10.





• Express 0x121 in decimal.

### • Express 0110 1011<sub>2</sub> in decimal

## Decimal to Binary

Answer

Part 3

• To convert decimal to binary (or hex),...

• Example: Convert 94 to 8-bit binary.

|             | (128) | (64)           | (32)           | (16) | (8)            | (4)            | (2)            | (1)            |
|-------------|-------|----------------|----------------|------|----------------|----------------|----------------|----------------|
| Place Value | 27    | 2 <sup>6</sup> | 2 <sup>5</sup> | 24   | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |
| Digits      |       |                | *0             |      | *1:            | *1:            | *1:            | *0             |
|             |       |                |                |      | 14 - 8         | 6 - 4          | 2 - 2          |                |
|             |       |                |                |      | = 6            | = 2            | = 0            |                |
|             |       |                |                |      |                |                |                |                |

••

# Between Hex and Binary

• Each Hex digit directly..

- Examples: Hex to Binary

  0x9F =..
  0xDEAD C0DE =
- Example Binary to Hex

   1010 0011 0001 0101<sub>2</sub>
   =...

| Hex | Binary |
|-----|--------|
| 0x0 | 0000   |
| 0x1 | 0001   |
| 0x2 | 0010   |
| 0x3 | 0011   |
| 0x4 | 0100   |
| 0x5 | 0101   |
| 0x6 | 0110   |
| 0x7 | 0111   |
| 0x8 | 1000   |
| 0x9 | 1001   |
| 0xA | 1010   |
| 0xB | 1011   |
| 0xC | 1100   |
| 0xD | 1101   |
| 0xE | 1110   |
| 0xF | 1111   |

### Review

• Convert  $50_{10}$  to binary.

#### • Express 0xF28C in binary.

#### • Express 1011 1010 0100 0000, in hex.

Part 4

### Binary Arithmetic and Signed Numbers

### Addition

- Adding binary just like adding base 10, but..
- Example:
- 101011 + 001011
- =
- Overflow: + 001010 =

## **Negative Numbers**

 How can we make a number negative if we don't have the + or – sign? (just 0's and 1's!)

#### • Idea 1:

Make the first bit represent + (1) or -(0)

#### Limitations:

- ..

- Special hardware to maintain the sign bit.

### Radix Complement

- Motivation: Addition is easier..
   Easier for hardware to support only addition.
- Complement
  - Complement of X, in base b, with n digits is:..
- Base 10 Example
  - Complement of 24, base 10, 2 digits:

- Complement of 24, base 10, 3 digits:

### Subtraction

- Replace subtraction with addition: Replace A-B with:..
- Example (Base 10, 2 digits):
  - $\begin{array}{r} -55 32 \\ = 55 + \text{complement}(32) \\ = 55 + (100 32) \\ = 55 + 68 \\ = 123 \end{array}$
  - Why didn't that work?..
- Change subtraction to finding complement, but that..

## 2's Complement

Easy way to find 2's complement (base 2):
 1)..
 2)..

#### • Find the 2's complement of:

|                    | 5 (4 bits) | 31 (8 bits) | 127 (8 bits) |
|--------------------|------------|-------------|--------------|
| Binary             |            |             |              |
| Inverted Bits      |            |             |              |
| +1<br>(Complement) |            |             |              |

- Interpretation of bits:..
- $= -2^{n} 2^{n-1} \dots 2^{2} 2^{1} 2^{0}$

### **Negative Numbers**

- Computers often use 2's complement notation to represent..
  - Positive numbers written as..
  - Negative numbers written as..
- Possible tasks
  - "Find the 2's complement of X", means..
  - "Express X in 2's complement notation", means
    if X is positive, just..
    - if X is negative, convert abs(X) to binary, do 2's complement to get negative.

### Review

 What is the sum of the following (in 16-bit binary)? 1101 0101 1010 1010 +0101 0110 1100 1001

#### • What is the <u>2's complement</u> (4 bits) of <u>3</u>?

 Express these in 8-bit <u>2's complement notation</u>: 15 -86

### Addition and Subtraction

• Solve the following in 8 bit 2's complement

Complement of 31 (0001 1111)

| 5 + 5 | 5 + 5     | 71 - 31   | 127 + 6   |
|-------|-----------|-----------|-----------|
|       | 0000 0101 | 0100 0111 | 0111 1111 |
| +     | 0000 0101 | 1110 0001 | 0000 0110 |
| =     |           |           |           |

 Overflow for ans=X+Y: If X & Y same sign, and ans is opposite sign.

## Meaning of Binary Values

- The meaning of bits depends on the representation.
- What is the value of the following as..

| Unsigned | Binary Value | Signed |
|----------|--------------|--------|
| 0        | 000          | 0      |
| 1        | 001          | 1      |
| 2        | 010          | 2      |
| 3        | 011          | 3      |
| 4        | 100          | -4     |
| 5        | 101          | -3     |
| 6        | 110          | -2     |
| 7        | 111          | -1     |

### Exercise: 2's Complement Subtraction

Solve (6 – 2) using 2's complement (4 bit):

### • Solve (-3 – 2) using 2's complement (4 bit):

Overflow for ans=X+Y:
 If X & Y same sign, and ans is opposite sign.

# Summary

- Understand bits & bytes of variable types.
   char, short, int, long, long long
- Conversions between base 10, 16, and 2.
  - Easy conversion between hex and binary.
- Negative numbers and 2's complement.
  - Expressing signed numbers.
  - Subtraction using addition.