
Lab 4 - Functions & Live Share CMPT 130

 Lab 4 - Functions & Live Share

1. Warnings in VS Code
Create a Lab4/ folder in your VS Code workspace and copy the lab4.cpp file (from course
website) into the folder. Run the program to see what it does.

1. The first few lines of main() have a bug; can you spot it?

▪ Run the program with different inputs for x; what do you notice?
Hint: Try 42? What about 30? Should it do the same?

▪ The code you ran is valid C++; however, there’s a common bug in it, and the compiler
can help us find it.

2. Enable all C++ warnings:

▪ Open the file: ./vscode/tasks.json

▪ In the “args” section:
add a comma on the last line,
add the four highlighted lines
shown on the right.

3. Save tasks.json, switch back
to lab4.cpp and recompile.
You may need to change the .cpp
file’s contents (such as adding a
space) in order to be able to
recompile.

▪ If you encounter unexpected
errors, such as unable to even
compile when you press the
run button, double check
tasks.json (ensure there is a
comma after every line
except the last one).

Generated Sep 29, 2024, 11:00 PM Page 1/5 © Brian Fraser

{
 "tasks": [
 {
 "type": "shell",
 "label": "C/C++: g++ build active file",
 "command": "/usr/bin/g++",
 "args": [
 "-g",
 "${file}",
 "-o",
 "${fileDirname}/${fileBasenameNoExtension}",
 "-Wall",
 "-Werror",
 "-Wshadow",
 "-std=c++20"
],
 "options": {
 "cwd": "${workspaceFolder}"
 },
 "problemMatcher": [
 "$gcc"
],
 "group": {
 "kind": "build",
 "isDefault": true
 }
 }
],
 "version": "2.0.0"
}

Text 1: Contents of .vscode/tasks.json

Lab 4 - Functions & Live Share CMPT 130

4. Check out the compiler’s warning. Does it help you find the bug?
\CMPT130\Labs\Lab4\lab4.cpp: In function 'int main()':
\CMPT130\Labs\Lab4\lab4.cpp:17:11: warning: suggest parentheses
around assignment used as truth value [-Wparentheses]
 if (x = 42) {
 ~~^~~~

▪ The compile suggests adding brackets: if ((x = 42)) {…}
The warning tells us which line of code is the issues.

▪ Note that this warning suggests a possible fix which would suppress the warning, but
would not solve the bug. (Since this is actually valid C++ code, the compiler is
willing to accept it but suggests the added brackets if you really want this behaviour
to tell future programmers its intentional).

5. Edit the code and solve the problem! (hint: = vs ==)

6. Every file you compile should compile without warnings. Resolving compiler
warnings greatly helps reduce bugs.

7. I suggest having your tasks.json file include the following args:
"-Wall": Turn on all warnings.
"-Werror": Treat all warnings as errors (i.e., you must remove them so it compiles).
"-Wshadow": Generate a warning if you reuse a variable name inside the same scope.
"-std=c++20": Use a modern standard for C++.

Generated Sep 29, 2024, 11:00 PM Page 2/5 © Brian Fraser

Lab 4 - Functions & Live Share CMPT 130

2. Making Functions
In the same lab4.cpp file (from course website) make the following changes.

Use functions to break-down the program into smaller pieces. Do not change what the program
does (the output should be the same); just changing the program's structure.

Which parts should be their own function?
Hint: create one function for each calculation:

Each of the calculations for n2, sum 1..n, ...
Think about the arguments these functions will need, and their return types.

For example, create a function: calcNSquared(), which accepts the integer n and
returns the value of n squared (an integer).

Your program must have NO global variables; global constants are OK.

Hint: If your function needs a value, pass it in as a parameter.

Hint: If your function computes something, return it.

Hint: If your function returns a value, make sure that the calling code (such as in
main()) stores the result in a variable that you can use, such as:
int my_answer = calcNSquared(5);

Note that for this exercises you will be making (very) short functions. Sometimes functions
can be long (20-30 lines); sometimes they can be very short (1 line).
Generally, shorter (1-10 lines) is best.

Understanding Questions

1. Explain why most function will accept values they need as parameters, such as:
 void printNStars(int n);
instead of reading in the data from the keyboard directly in the function?

2. What is the difference between a function that uses:
 return 10;
compared to:
 cout << 10;
Which one will we usually use?

Generated Sep 29, 2024, 11:00 PM Page 3/5 © Brian Fraser

Lab 4 - Functions & Live Share CMPT 130

3. VS Code – Live Share (Optional)

You may optionally attempt this section if you are running Visual Studios Code, or Visual
Studios. Live Share allows you to share your VS Code project with someone else for interactive
coding or debugging.

1. You may want to watch a demo of VS Code’s Live Share before continuing.

2. Create a new VS Code workspace named LabLiveShare (different than your current
cmpt130 folder). Note that this is not just a new folder inside your cmpt130/ folder: it is
a new whole workspace or folder at the same level of cmpt130/.

▪ We will make a new one because Live Share shares the whole project and we don’t
want to share the entire project in case you have your assignment solution in it.

▪ Make a folder on your computer named LabLiveShare

▪ Open a new VS Code window and open this folder: File → Open Folder. Copy the
.vscode/ folder into new folder from the previous project.

▪ Create a new .cpp file which prints something to the screen.

3. Setup (derived from this guide)

▪ Install the Visual Studios Live Share extension: click extensions icon on left ()

and search “Live Share”

▪ Sign in by clicking the Live Share status bar (bottom left):

I suggest signing in via a GitHub account, but you can create an account as needed!
(Note that this is not managed by SFU and is outside of our control).

4. Find a lab partner

▪ Have a friend (or find a new lab-friend in person/on Discord) get ready to join your
session.

▪ Suggestion, post to Discord’s “general” chat channel “LFG Live Share lab”

5. Start a live share session:

▪ Enter the Live Share tab on the left ().

▪ Double click the “Start collaboration session” option in the top left.

▪ Optionally (recommended) click “Make read-only” so other person cannot edit.

▪ This will have copied an invite link to your clip board.

▪ Paste the invite to your lab-friend. When they join you should be able to see the

Generated Sep 29, 2024, 11:00 PM Page 4/5 © Brian Fraser

https://youtu.be/aONjiS_9dps
https://docs.microsoft.com/en-us/visualstudio/liveshare/quickstart/share

Lab 4 - Functions & Live Share CMPT 130

details on the Live Share section on the left ().

Warning: Everything in your project will be shared to the other person, so be careful
what you share (such as assignment code, etc).

6. Lab-friend Joins Session

▪ Inside VS Code, go to the Live Share tab on left ().

▪ Double click “Join collaboration session” and paste in the URL created above.

7. Experiment:

▪ Run the program and show your lab-friend the output. Ensure they can also see your
code.

8. When done:

▪ Close your Live Share: On the Live Share tab on the left, click the cancel icon top left.

← Click here

▪ Re-open your CMPT130 workspace: File → Open Recent → (select CMPT130)

9. Now, have your lab-friend send you a Live Share invite!

4. Submit
• Submitting your completed lab file to CourSys

Generated Sep 29, 2024, 11:00 PM Page 5/5 © Brian Fraser

	1. Warnings in VS Code
	2. Making Functions
	3. VS Code – Live Share (Optional)
	4. Submit

