
130 Course Content Summary (Fall 2024) by Dr. Brian Fraser

130 Course Content Summary (Fall 2024)
This summary is meant to highlight what type of material is and is not testable. Many
questions may rely on you understanding and applying this knowledge; it is not sufficient
to memorize this list, you must be able to use the material.

1. General thoughts
You will have to write and read code on the test.
You will not be asked anything on VS Code, or GCC/g++ command line.

2. Lecture content

Before Midterm
0. Administrative & Academic Honesty

Review expectations and consequences for academic honesty.
Be warned: I am passionate about it!
Nothing testable.

1. Computers Introduction
General sense of intelligence of a computer vs a human brain.
Understand “What is computer Science” (don't memorize).
Know hardware vs software.
Understand Euclid's algorithm.
What is an algorithm, a data structure (enough to relate to a program which plays a
game); what are the 4 steps in developing a program.
Language Hierarchy: Machine language, assembly, high-level languages
Understand C++'s advantages

Don't need to memorize C++'s history

2. Introduction to C++
Correct structure for a simple program (main() method, return type).
Case sensitive,
Build process: role of a compiler and an IDE vs command line process (don't need to
memorize commands).
cout:

“#include <iostream>” and “using namespace std;”
stream insertion operator, line feeds (2 ways), and special characters.

Error types: Compile, Run-time, Logical.
Debugging and QA.

Printed Nov 25, 2024, 05:20 PM Page 1/8 © Brian Fraser

130 Course Content Summary (Fall 2024) by Dr. Brian Fraser

3. Variables
Identifier naming rules
Variable declaration, initialization, use, naming convention (camelCase)

Importance of variable naming.
Know operators: +, -, *, /, %, =.

Know integer division.
Able to solve problems using C++.
Know data types; string, char, int, double
Allocating a minimum column width for a conversion specifier with setw()
cin to read an integer or a string.
Scope, uninitialized variables.
Commenting styles.

4. Expressions
Expressions & Operators

Arithmetic operators, integer division, brackets.
Know operator precedence table; summary of currently seen operators is below.
Operator Description Associativity

() [] ++ -- Functions, arrays, postfix inc/decrement Left to Right

!
+ -
++ --

Not
Unary sign operators
Prefix increment

Right to Left

(type name) Casting Right to Left

* / % Multiply, divide, modulus Left to Right

+ - Add, subtract Left to Right

< <= > >= Comparison Left to Right

== != Equality, not-equal Left to Right

&& And Left to Right

|| Or Left to Right

= += -= *= /= %= Assignment Right to Left
Expression trees: construction, and use for evaluating expressions.
-=, +-, *=, /=, %=

Constant declaration, use, and naming convention
Must be able to create and use const variables and explain their purpose
Overflow / underflow; INT_MAX, INT_MIN - <climits>

Printed Nov 25, 2024, 05:20 PM Page 2/8 © Brian Fraser

130 Course Content Summary (Fall 2024) by Dr. Brian Fraser

5. If & Loops
boolean expressions: ==, !=, <, <=, >, >=

Understand how the following interrelate: true, false, 1, 0, and non-zero values.
Find common error of = vs ==

If statement:
if, else, nested if-else,
Scope of variables.
Good style: indentation, use of {}.

While Loop
x++, x--
Reading and using while loops, recognizing infinite loops, use of nested loops.
Handling user input in a loop.

General:
Able to trace through a loop, track values, determine outputs.

6. Functions
Why use functions?

Header, return type,
Definition vs use vs prototype.

Arguments
Able to write functions that accept parameters, and able to use (call) with
arguments.
Able to trace through a program.
Terminology: arguments, parameter list, parameters

Returning a value.
Know the difference between returning a value and outputting a value.
How to call a function and use a returned value
Understand execution flow through functions which use return.

Scope: local, global
Scope and lifetime for local, and global variables.
Able to explain what is good or bad about global variables and global constants.

7. Random, AND/OR
Random

rand(), srand() - <cstdlib>
time(nullptr) - <ctime>
How to generate a random number between 1 and 50 (for example).
How seed numbers affect the pseudorandom number generator.

Complex boolean expressions: &&, ||, !
Know truth-tables
Know precedence table

Quick test for boolean
Explanatory variables

Printed Nov 25, 2024, 05:20 PM Page 3/8 © Brian Fraser

130 Course Content Summary (Fall 2024) by Dr. Brian Fraser

8. Functions (again)
Pass by value
How and when to use a function prototype.

Where to put ;'s
Understand effect of the compiler flags: -Wall, -Werror

9. For loops
Understand break and continue.
for

Definite vs indefinite loops.
Syntax of a for loop
Variables declare in for loop's initialization exist only in the loop.
Able to convert between a while loop and a for loop.
Nested for loops

Other skills
Formatted output (fixed, setprecision())
Debugger

Know what the debugger is.
Understand the steps of setting a breakpoint, run, step-over.

Writing clean code (formatting, indentation, naming, “paragraphs of code”)

Printed Nov 25, 2024, 05:20 PM Page 4/8 © Brian Fraser

130 Course Content Summary (Fall 2024) by Dr. Brian Fraser

After Midterm
10. Representation

Data Types:
Bits, bytes, larger sizes (kB, MB, GB, TB)
Understand different options for integers (don't memorize).
sizeof()

Binary Representation
Able to count in base 2, 10 and 16; how to indicate a value is hex.
Convert unsigned numbers between base 2, 10, 16.
Able to add binary numbers, know about overflow.
Negative numbers:

Understand what a complement is; no need to compute base 10 complement.
Able to convert positive/negative numbers between base 10 and 2’s
complement
Able to do subtraction via addition with complement numbers.
Know how to interpret binary values as signed or unsigned.

Able to:
Express a positive/negative integer in 2’s complement notation.
Apply the 2’s complement to a positive value.

11. Data Types
Floating Point:

Know float, double; understand long double.
Understand issue with exact values and floating point numbers.

Conversions:
Know truncation and rounding with ceil(), floor(), and round()
Know what to be a type promotion and a type demotion.
Understand rank hierarchy of types; know relative positioning for char, int,
float.
Implicit conversions: Know rules, when they apply, what they do.
Explicit conversions: Know how and when to use it, and what it does.

Math <cmath>
abs(), sqrt(), pow(), ceil()

12. Stack Memory
Know the basics of computer memory and addressable bytes
Know how the stack operates

What is push, and pop
During a function call, know when values are pushed, and popped
How arguments are passed to a function for pass by value
Know stack frame, local variables on stack
How a return value is returned from a function
Able to draw a stack for a simple function call, as shown in class
Understand how memory is reused between function calls

Printed Nov 25, 2024, 05:20 PM Page 5/8 © Brian Fraser

130 Course Content Summary (Fall 2024) by Dr. Brian Fraser

13. Vectors
What they are, when to use them.
How to create and use them.
Initializing, adding elements, accessing elements, getting the number of elements.
Know the difference between a vector element and its index.
Out of bounds errors, type of error it triggers.
How to pass a vector to a function as an argument: able to write the function, and call
the function.

Know if changes to a vector argument inside the function apply to the original.
Know pass-by-reference

14. Strings and For-Each loop
Strings

Know how to use a string object (create, concatenate, get size, access/change
specific characters).
Able to cin and cout strings.
Able to write functions to compare strings and do character-by-character
algorithms on them.
Know pass-by-constant-reference.

For-Each loop
Know what the for-each loop is and how to use it on a vector and string.
Know benefit and limitation of for-each loop.
Able to read/write code using a for-each loop. Able to convert code between the
for-each loop and the standard for-loop and back.

15. Files
Know about volatile and non-volatile storage.
Know what a stream is, and the operators required to work with input vs output
streams.
Know what a class is, and what an object is. Know what instantiation is. Know the
dot operator.
Know how to open, read from, and close an input file.
Know how to open, write to, and close an output file.
Know what it means for data file to be white-space separated.
Know how to read a file line-by-line.
Know exit() vs return vs break

16. Structures
Know what parallel vectors are, and their limitations.
Know what is a structure, how to declare one, why they are useful.
Know how to use and change an attribute's value in a structure
(ex: myStruct.height = 1;)
Understand how to initialize a structure.
Know how to pass a structure to a function using pass-by-value and pass-by-
reference. Know how to return a struct from a function.
Know how to create a vector of structures.

Printed Nov 25, 2024, 05:20 PM Page 6/8 © Brian Fraser

130 Course Content Summary (Fall 2024) by Dr. Brian Fraser

17. Pointers
Know how to use pointers:

What they are
How to declare them, how to initialize them (nullptr).
How to get an address of a variable.
Dereferencing a pointer.

Pass by: value, reference, and pointer
Able to trace a program using any of these.
Able to read and write a simple function using pointers

18. Arrays & Dynamic Memory
Arrays:

Know how to create an array, access elements. Know that its size is fixed once
created.
Know how to pass an array to a function.
Understand arrays and pointers and their interchangeability.

Able to access an array using pointer syntax; able to access a pointer using
array syntax.

Dynamic Memory
Know code storage, static memory, automatic memory (stack), dynamic memory
(heap)

Know what goes in each of these memory areas.
Know problem of returning a pointer to a local variable.
Understand a dynamic array with new and delete[].
Know where pointers (as local variables) are stored.

19. Searching
Understand problem & terminology: target element, search pool.
Linear search:

Understand idea.
Able to perform a linear search and count number of elements compared.
Able to write a linear search.
Able to call a linear search function.

Binary search:
Understand idea, and limitations of when algorithms applicable.
Able to apply the binary search algorithm to a data set and count number of
elements compared.
Note: You should be able to do this without being given the algorithm
Understand binary search algorithm (you will not be asked to write the algorithm).

Understand factors affecting which search algorithm you would choose.

Printed Nov 25, 2024, 05:20 PM Page 7/8 © Brian Fraser

130 Course Content Summary (Fall 2024) by Dr. Brian Fraser

20. Sorting
Understand sorting problem.
Selection sort & Insertion sort

Understand idea of each algorithm.
Able to apply each algorithm to a data set showing each pass of the algorithm and
what has been sorted.
Understand each algorithm's implementation
Able to write code to call a sort algorithm, able to trace a sort algorithm if
provided.

Understand criteria for algorithm selection.

21. Recursion
Understand recursive thinking: base case & recursive step.

Able to briefly describe the difference between recursion and iteration.
Understand that each recursive call gets its own stack frame.

Able to write or trace through simple recursive methods.
Understand recursive sum(), factorial, Fibonacci, odd/even
Operations on a vector or array:
count occurrences of a character, sum values in a vector/array.

Printed Nov 25, 2024, 05:20 PM Page 8/8 © Brian Fraser

	1. General thoughts
	2. Lecture content
	0. Administrative & Academic Honesty
	1. Computers Introduction
	2. Introduction to C++
	3. Variables
	4. Expressions
	5. If & Loops
	6. Functions
	7. Random, AND/OR
	8. Functions (again)
	9. For loops
	10. Representation
	11. Data Types
	12. Stack Memory
	13. Vectors
	14. Strings and For-Each loop
	15. Files
	16. Structures
	17. Pointers
	18. Arrays & Dynamic Memory
	19. Searching
	20. Sorting
	21. Recursion

