
CMPT 120 Detailed Learning Outcomes

This page lists the tentative learning outcomes for each week of this course, and will be updated as the course progresses (subject to revision). Students are responsible for all content covered in the
Readings, Lectures and Assignments, and should consider this page primarily as a study guide.

Week Code, Algorithms, Concepts and Processes Functions and Keywords Textbook

Week 1

Sep 4+

Introduction to CS and first programs

1. Know that CS is problem solving
2. Understand problem solving by subdividing tasks into subtasks
3. Able to explain the main characteristics of an algorithm
4. Know what is plagiarism for programming, based on course policy
5. Know what pseudocode is
6. Able to write Python comments
7. Know what information is in a program header block (i.e. initial

comments with author, date and purpose)
8. Able to output a "Hello World" using print()
9. Able to contrast programming languages with natural languages
10.Able to use an IDE like VS Code, IDLE, or repl.it
11.Able to submit code in a .zip or .py file

print("Hello, World")

print("I have",1)

#

"a string"

""" a multi-line string """

• 1.1. The way of the program
• 1.2 Algorithms
• 1.3 The Python Programming Language
• 1.4 Executing Python in Runestone Textbook
• 1.5 More about programs
• 1.11 Formal and Natural Languages
• 1.12 A Typical First Program
• 1.13 Comments

Week 2

Sep 9+

Strings, concatenation, conditional statements, lists, random module,
relational operators, booleans

1. Able to design/plan an algorithm, e.g. using comments or pseudocode
2. Able to apply some common problem solving strategies, such as

breaking down the problem into smaller pieces
3. Able to obtain input into Python from the terminal to a variable
4. Able to receive input from terminal without saving it to a variable
5. Know how to assign a value to a variable
6. Able to output a string variable in a print statement
7. Able to concatenate two strings
8. Know the constraints and conventions on variable naming
9. Know that there are different types of data, although String is the focus

for now
10.Able to create a list of strings and assign it to a variable
11.Able to use the random.choice() function on a list (including import)

= (variable assignment)

+ (string concatenation)

" " (string type)

[] (lists)

random.choice()

import

if / elif / else

== < > !=

and, or, not

• 2.1 Variables, Expressions and Statements
• 2.2 Values and Data Types
• 2.4 Variables
• 2.5 Variable names and keywords
• 2.6 Statements and expressions
• 2.7 Operators and operands
• 2.8 Input
• 2.10 Reassignment
• 5.1 Modules
• 7.1 Boolean values and expressions
• 7.2 Logical Operators
• 7.4 Conditional execution: Binary Selection
• 7.5 Omitting the else clause: Unary selection
• 9.3 Concatenation
• 10.2 List values

https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/intro-TheWayoftheProgram.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/ListValues.html
https://runestone.academy/runestone/books/published/thinkcspy/Strings/OperationsonStrings.html
https://runestone.academy/runestone/books/published/thinkcspy/Selection/OmittingtheelseClauseUnarySelection.html
https://runestone.academy/runestone/books/published/thinkcspy/Selection/ConditionalExecutionBinarySelection.html
https://runestone.academy/runestone/books/published/thinkcspy/Selection/Logicaloperators.html
https://runestone.academy/runestone/books/published/thinkcspy/Selection/BooleanValuesandBooleanExpressions.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonModules/modules.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/Reassignment.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/Input.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/OperatorsandOperands.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/StatementsandExpressions.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/VariableNamesandKeywords.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/Variables.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/ValuesandDataTypes.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/intro-VariablesExpressionsandStatements.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/Comments.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/ATypicalFirstProgram.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/FormalandNaturalLanguages.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/MoreAboutPrograms.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/SpecialWaystoExecutePythoninthisBook.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/ThePythonProgrammingLanguage.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/Algorithms.html

12.Knows what the . after a module name does
13.Understands that modules contain functions (light treatment)
14.Know to put import statements at the top of the program, after header
15.Knows how to use if/elif statements with ==
16.Knows how to use the else clause
17.Understands the meaning of logical operators and, or
18.Knows about comparison operators such as < > == and how to use in a

conditional statement
19.Understands what a Boolean expression is and what it can be evaluated

to (True/False)
20.Understands the basics in combining Boolean expressions, e.g. x or y,

using strings only
21.Is able to print a Boolean expression
22.Knows some of the characteristics of good software: usable, pleasing to

read, minimizes duplication, robust to errors
23.Knows to include a short description of the program in the header
24.Able to test a program for the desired outcome, interactively
25.Able to test a program (lightly) for unexpected cases, interactively
26.Knows how to test smaller pieces of code by commenting out blocks
27.Knows the interpreter's role in catching errors

True, False

Week 3

Sep 16+

String methods, for loops, nested if's, integers, lists with variables

1. Can apply the strip, lower, and upper String methods appropriately
2. Can identify the String data type
3. Able to use the REPL interactive console (or IDLE shell) to test

methods and inspect variables
4. Able to use the in keyword for both (1) string in a list and (2)

character(s) in a string.
5. [New] Able to use an interactive debugger to step through Python code

and see variables change values.
6. Can create a list using variables (e.g. from user inputs)
7. Can use a for loop over elements of a list
8. Understands the range(...) function and what it represents
9. Knows the concept of the index variable in for i in
range(...)

10.Understands the Integer type
11.Able to convert an Integer to a String

mystring.lower()
mystring.upper()
mystring.strip()

in (strings/lists)

for <var> in <sequence>:

str(...)
int(...)

nested conditionals, i.e.

if <condition>:

 if <condition>:

• 1.7 Syntax Errors
• 1.8 Runtime Errors
• 1.9 Semantic Errors
• 9.5 String Methods (except 9.5.1)
• 9.13 The in and not in operators
• 10.5 List Membership
• 4.4 The for loop
• 4.5 Flow of Execution of the for Loop
• 4.7 Range function (except Turtle examples)
• 2.2 Values and Data Types
• 2.3 Type conversion functions

https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/Typeconversionfunctions.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/ValuesandDataTypes.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonTurtle/TherangeFunction.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonTurtle/FlowofExecutionoftheforLoop.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonTurtle/TheforLoop.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/ListMembership.html
https://runestone.academy/runestone/books/published/thinkcspy/Strings/Theinandnotinoperators.html
https://runestone.academy/runestone/books/published/thinkcspy/Strings/StringMethods.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/SemanticErrors.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/RuntimeErrors.html
https://runestone.academy/runestone/books/published/thinkcspy/GeneralIntro/Syntaxerrors.html

12.Knows that concatenation is only applicable between 2 strings, not Int
and String

13.Is able to design and implement nested conditionals
14.Understands the concept of robustness with respect to code
15.Can identify whether an error is a syntax error or a semantic error
16.Understands the concept of method chaining (applying to an object and

sending output from one method to the method to its right, using the .
operator)

else:

range(4)
range(1,5)
range(1,10,2)

Week 4

Sep 23+

Arithmetic, conversion, accumulation pattern, for loop with range

1. Can use the range function with arguments that are variables (not only
numbers)

2. Knows that a loop is a way to reduce duplication of code
3. Able to use integers and floats and manipulate them in variables
4. Knows how to initialize a variable of type Integer
5. Can apply the accumulator pattern (including initialization) and +=

shortcut
6. Able to get the length of a list
7. Able to convert strings to integer type (esp. user input)
8. Knows that division of integers converts type to float
9. Able to perform arithmetic operations on numbers
10.Can use the accumulator pattern with other arithmetic operators
11.Can print floats to a given number of decimal places
12.Able to generate formatted user output using either string's .format()

function, or the f-string literals (f"I'm {age} years old!")

type(17)
type(0.0)
type("xoxo")
type([1, 2, 3])
type(True)

2 ** 2
3 * 4
5 - 3
4 + 4
5 / 3
5 // 3
12 % 5

x = 1
x = x+1
x += 1
int(4.3)
float("123.45")
str(12.3)

len(myList)

print("Number:
{:.3f}".format(myfloat))
print(f"Number: {myfloat:.3f}")

• 2.2 Values and Data Types (review of Integers
and Floats)

• 2.3 Type conversion functions (review)
• 2.7 Operators and Operands (review)
• 2.9 Order of Operations
• 2.10 Reassignment (review)
• 2.11 Updating variables
• 6.5.1 The Accumulation Pattern (activity

func-4-6 only)
• 9.5.1 String Format Method
• 10.3 List Length

Week 5

Sept 30+

Working with text files, indexing and slicing strings and lists

1. Able to open and read lines from a text file
2. Able to split a string into a list
3. Able to access a specific element(s) of a list using indexing/slicing

file = open("myfile.txt")
file.readline()
for line in file:

mystring.split(...)

• 9.4 Index Operator: Working with the
Characters of a String

• 9.7 The Slice Operator
• 9.8 String Comparison

https://runestone.academy/runestone/books/published/thinkcspy/Strings/StringComparison.html
https://runestone.academy/runestone/books/published/thinkcspy/Strings/TheSliceOperator.html
https://runestone.academy/runestone/books/published/thinkcspy/Strings/IndexOperatorWorkingwiththeCharactersofaString.html
https://runestone.academy/runestone/books/published/thinkcspy/Strings/IndexOperatorWorkingwiththeCharactersofaString.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/ListLength.html
https://runestone.academy/runestone/books/published/thinkcspy/Strings/StringMethods.html#string-format-method
https://runestone.academy/runestone/books/published/thinkcspy/Functions/TheAccumulatorPattern.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/UpdatingVariables.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/Reassignment.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/OrderofOperations.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/OperatorsandOperands.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/Typeconversionfunctions.html
https://runestone.academy/runestone/books/published/thinkcspy/SimplePythonData/ValuesandDataTypes.html

4. Able to access a specific character(s) in a string using indexing/slicing
5. Able to perform comparisons between numbers, taking into account

order of operators (operator precedence)
6. Able to perform comparisons (e.g. !=, <,>) with strings
7. Can interpret code with nested conditionals with comparison operators

(e.g. !=, <,>=) and numbers
8. Able to find the common elements between 2 lists
9. Able to understand and use a nested for loop
10.Able to apply operator precedence to evaluate expressions
11.Able to concatenate lists
12.Able to apply accumulation pattern for strings and lists (previously was

numbers)
13.Able to calculate the maximum among several values

mystring.strip(...)

mystring[0]
mystring[-1]
mystring[:]
mystring[3:5]
mystring[:3]
mystring[3:]

"a"*3
["a"]*3
alist[2][0]
list1+list2
list1 = list1 + [elem]

alist[0]
alist[:3]
alist[1:3]
alist[4:4]
alist[4:]
alist[3:-1]

"a"<"b"

• 10.4 Accessing Elements in a List
• 10.6 Concatenation and Repetition for Lists
• 10.7 List Slices
• 10.8 Lists are Mutable
• 10.18 Accumulation with Lists
• 11.1 Working with Data Files
• 11.2 Finding a File on your Disk
• 11.3 Reading a File
• 11.4 Iterating Over Lines in a File

Week 6

Oct 7+

Continuing with learning outcomes from Week 6

1. Able to calculate the maximum/minimum among several values
2. Able to coordinate between 2 or more lists using a common index

listA = [10, 30, 20, 30]

maxIndex = 0
maxVal = listA[0]
for i in range(len(listA)):
 if listA[i] > maxVal:
 maxVal = listA[i]
 maxIndex = i
print(maxIndex)
print(maxVal)

listA = [10,20,30]
listB = ["a", "b", "c"]
index = ...
listA[index]
listB[index]

• 9.6 Length of strings
• 9.9 Strings are Immutable
• 9.11 Traversal by index
• Accumulation of strings

Week 7 ----- Midterm content ends here ----- Midterm content ends here -

-- Midterm content ends here --
• External reading from Gaddis' textbook (PDF).

https://canvas.sfu.ca/courses/80549/files/22190544/preview
https://runestone.academy/runestone/books/published/thinkcspy/Strings/TraversalandtheforLoopByIndex.html
https://runestone.academy/runestone/books/published/thinkcspy/Strings/StringsareImmutable.html
https://runestone.academy/runestone/books/published/thinkcspy/Strings/Length.html
https://runestone.academy/runestone/books/published/thinkcspy/Files/Iteratingoverlinesinafile.html
https://runestone.academy/runestone/books/published/thinkcspy/Files/ReadingaFile.html
https://runestone.academy/runestone/books/published/thinkcspy/Files/FindingaFileonyourDisk.html
https://runestone.academy/runestone/books/published/thinkcspy/Files/intro-WorkingwithDataFiles.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/TheAccumulatorPatternwithLists.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/ListsareMutable.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/ListSlices.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/ConcatenationandRepetition.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/AccessingElements.html

Oct 14+ Bits and Bytes

1. Knows what a bit represents in a computer
2. Can convert a given number of bytes, kilobytes, megabytes, gigabytes,

into the number of corresponding bits (both 1000 and 1024 will be
accepted as conversion constant)

3. Able to convert a decimal number into its binary representation, and
vice versa

4. Knows the relationship between binary numbers and hexadecimal
numbers

5. Knows that binary numbers can be converted to hexadecimal by
grouping in 4 bits (and vice versa)

6. Knows the purpose of ASCII
7. Knows the purpose of Unicode with respect to ASCII
8. Knows that RGB colors are represented with 3 bytes (or 24 bits, or 6

hexadecimal digits)

1101(2 = 13(10

10A(16 <-->
0001 0000 1010(2

Chapter 1, especially section 1.3.

Week 8

Oct 21+

Midterm Week

• Wednesday: Going over questions from practice midterm
• Friday: Midterm

Turtles, defining functions

1. Able to use the Turtle package to create drawings, namely the functions
listed here -->

2. Able to read and understand basic Turtle code to visualize its output
3. Able to create a function
4. Able to create a function with parameters
5. Able to call a function previously created in the program
6. Able to call a function from a loop, possibly using the for loop index in

the arguments
7. Able to color the turtle using turtle color names
8. Able to color the turtle using color coded with RGB values as a 3-tuple

with values for (red,green,blue)
9. Able to identify the scope of a variable, especially in relation to

function scope

import turtle
pet = turtle.Turtle()
pet.forward(10)
pet.stamp()
pet.right(180)
pet.left(90)
pet.penup()
pet.pendown()
pet.goto(10,-10)
pet.color("blue")

turtle.colormode(255)
mycolor = (255,0,120)
pet.color(mycolor)

def myfunction(a,b):

myfunction(45,20)

for i in range(...):
 myfunction(i*2,i)

• 4.1 Hello Little Turtles!
• 4.2 Our First Turtle Program
• 4.3 Instances of Turtles
• 4.6 Iteration and Turtles
• 4.7 Range (review with Turtles)
• 4.8 A few more Turtle Methods
• 4.9 Summary of Turtle Methods
• 6.1 Functions
• 6.4 Local Variables (ignore return statement for

now)
• 6.11 Turtle Bar Chart

https://runestone.academy/runestone/books/published/thinkcspy/Functions/ATurtleBarChart.html
https://runestone.academy/runestone/books/published/thinkcspy/Functions/Variablesandparametersarelocal.html
https://runestone.academy/runestone/books/published/thinkcspy/Functions/functions.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonTurtle/SummaryofTurtleMethods.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonTurtle/AFewMoreturtleMethodsandObservations.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonTurtle/TherangeFunction.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonTurtle/IterationSimplifiesourTurtleProgram.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonTurtle/InstancesAHerdofTurtles.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonTurtle/OurFirstTurtleProgram.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonTurtle/intro-HelloLittleTurtles.html
https://canvas.sfu.ca/courses/80549/files/22190544/preview

Week 9

Oct 28+

Defining fruitful/productive functions

1. Able to create and use functions that return values
2. Knows how to call a function so that the value returned from a function

is received
3. Knows that print() is different than return in a function
4. Knows the effect that a return has if executed inside a loop (inside a

function)
5. Identifies cases when the value None is produced when calling a

function

While Loop

1. Able to identify when a while loop would be appropriate compared to a
for loop

2. Able to create a valid while loop with a sentinel (control variable)
3. Able to create a valid while loop with multiple control variables
4. Able to use a while loop to validate user input

def multiplier_100(a):
 return (a*100)

receive = multiplier_100(5):

While Loops

<init variable/s>
while <boolean with variable/s>:
 <update variable/s>

• 6.2. Functions that Return Values
• 6.5 The Accumulator Pattern (review, now with

knowledge of return)
• 6.6 Functions can call other functions
• 6.7 Flow of Execution Summary

While Loops
• 8.3 The While Statement
• 8.8 Other Uses of While

Week 10

Nov 4+

Image Processing - mutability of lists

1. Able to create and use a module containing one's own defined functions
2. Knows how pixel colors are represented by RGB values
3. Knows how to pass global variables into local scope
4. Knows to directly return the Boolean value evaluated from a Boolean

expression in a function without using if statement in the function, and
call the function and use the returned Boolean value.

5. Able to access and modify a 2D image in the form of a list of lists,
containing RGB values in the form of a list

6. Able to manipulate 2 dimensional lists, process a row, process a
column, process a specific element

7. Knows how to import and access the contents of packages and modules
8. Knows how to import a module with a short name
9. Able to read, show and save images using the 3Dlist representing an

image as provided in the cmpt120images module
10.Able to extract and/or change the color as RGB and/or individual color

components of a pixel using a 3DList representing an image as

def my_func(a,b):
 return a < b

if my_less_than(2,30):

my_3d_list[0][10][4]

import cmpt120images
import my_custom_module

• 8.11. Two-Dimensional Iteration: Image
Processing (Note: The Runestone textbook
image processing is analogous but slightly
different from what we will use and is required
in the course, which is provided in the
cmpt120images module. Follow the readings
for the theory)

• 5.1. Modules and Getting Help (Revisited)
• 5.2. More about using modules
• 5.3 The Math Module
• 5.5 Creating Modules
• 10.8. Lists Are mutable
• 10.24 Nested Lists

https://runestone.academy/runestone/books/published/thinkcspy/Lists/NestedLists.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/ListsareMutable.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonModules/CreatingModules.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonModules/Themathmodule.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonModules/MoreAboutUsingModules.html
https://runestone.academy/runestone/books/published/thinkcspy/PythonModules/modules.html
https://runestone.academy/runestone/books/published/thinkcspy/MoreAboutIteration/2DimensionalIterationImageProcessing.html
https://runestone.academy/runestone/books/published/thinkcspy/MoreAboutIteration/2DimensionalIterationImageProcessing.html
https://runestone.academy/runestone/books/published/thinkcspy/MoreAboutIteration/SentinelValuesAndValidation.html
https://runestone.academy/runestone/books/published/thinkcspy/MoreAboutIteration/ThewhileStatement.html
https://runestone.academy/runestone/books/published/thinkcspy/Functions/FlowofExecutionSummary.html
https://runestone.academy/runestone/books/published/thinkcspy/Functions/Functionscancallotherfunctions.html
https://runestone.academy/runestone/books/published/thinkcspy/Functions/TheAccumulatorPattern.html
https://runestone.academy/runestone/books/published/thinkcspy/Functions/Functionsthatreturnvalues.html

provided in the cmpt120images module

Week 11

Nov 11+ Alias vs. copy, lists and functions, mutability of lists

1. Knows what a list alias is, versus a copy
2. Knows the implication of sending a list as an argument to a function

(i.e. argument and parameter become aliases)
3. Knows how to modify a list in place using append()
4. Knows the effect of modifying a list inside a function when the list is

sent as parameter, even if it is not returned

Recursion

1. Knows the basic elements of a recursive function
2. Able to analyze a recursively drawn tree in Turtle
3. Able to write a simple recursive function that does not return any value,

e.g. to draw concentric circles
4. Understands the difference between executing a line of code before a

recursive call vs. after a recursive call
5. Is able to apply the 3 laws of recursion to write or analyze a basic

recursive fruitful function
6. Able to write a factorial function recursively
7. Able to write code that can produce the sum of a list using recursion
8. Able to write code that can reverse a string using recursion
9. Able to write a recursive or iterative function to check if a string is a

palindrome

mylist = [1,2,3]
mylistalias = mylist
mylist.append(4)
mylist and mylistalias now have
4 elements

def changes_list(alist):
 alist[0] = 1

origlist = ["a","b","c"]
changes_list(origlist)
origlist is now changed

• 10.10. Objects and References
• 10.11. Aliasing
• 10.12. Cloning Lists (fyi only)
• 10.13. Repetition and References (fyi only)
• 10.16. Append versus Concatenate
• 10.19. Using Lists as Parameters
• 10.22. Functions that Produce Lists

Recursion
• 16.1 What is Recursion?
• 16.3 The Three Laws of Recursion
• 16.5 Visualizing Recursion
• 16.6 Sierpinski Triangle

Week 12

Nov 18+

Recursion (Cont'd)

1. Able to write code that can produce the sum of a list using recursion
2. Able to write code that can reverse a string using recursion
3. Able to write a recursive or iterative function to check if a string is a

palindrome

Searching

• 16.2 Calculating the Sum of a List of Numbers
• 16.4 Converting an Integer to a String in Any

Base
• 6.2 Searching (pythonds book)
• 6.3 Sequential Searching (pythonds book, not

yet 6.3.1)
• 6.4 Binary Search (pythonds book, not yet 6.4.1)

https://runestone.academy/runestone/books/published/pythonds/SortSearch/TheBinarySearch.html
https://runestone.academy/runestone/books/published/pythonds/SortSearch/TheSequentialSearch.html
https://runestone.academy/runestone/books/published/pythonds/SortSearch/searching.html
https://runestone.academy/runestone/books/published/thinkcspy/IntroRecursion/ConvertinganIntegertoaStringinAnyBase.html
https://runestone.academy/runestone/books/published/thinkcspy/IntroRecursion/ConvertinganIntegertoaStringinAnyBase.html
https://runestone.academy/runestone/books/published/thinkcspy/IntroRecursion/CalculatingtheSumofaListofNumbers.html
https://runestone.academy/runestone/books/published/thinkcspy/IntroRecursion/SierpinskiTriangle.html
https://runestone.academy/runestone/books/published/thinkcspy/IntroRecursion/intro-VisualizingRecursion.html
https://runestone.academy/runestone/books/published/thinkcspy/IntroRecursion/TheThreeLawsofRecursion.html
https://runestone.academy/runestone/books/published/thinkcspy/IntroRecursion/WhatIsRecursion.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/FunctionsthatProduceLists.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/UsingListsasParameters.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/AppendversusConcatenate.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/RepetitionandReferences.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/CloningLists.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/Aliasing.html
https://runestone.academy/runestone/books/published/thinkcspy/Lists/ObjectsandReferences.html

1. Able to write a linear search function with various return types
(Boolean using for/while, index of unique found element, indices of all
found elements)

2. Able to recognize a binary search and produce code for it
3. Able to produce the code for a recursive binary search

Week 13

Nov 25+

1. Knows how to swap different elements in a list
2. Able to identify and write the code for a selection sort
3. Able to describe intermediate steps of a selection sort
4. Able to use the datetime or time module to compute the running time of

code
5. Able to apply learned search and sort algorithms on a dataset from a

file
6. Able to use range() with multiple parameters to iterate over a sublist, or

to iterate backwards over a list
7. Able to list 10 characteristics of a good algorithm/code
8. Understands in what case(s) time complexity is important to consider
9. Able to give 7 examples of reference functions commonly used with

Big O notation and compare them
10.Able to describe the general approach and functioning of Merge Sort

Complexity Analysis

1. Able to list 3 examples of critical operations
2. Able to identify the number of critical operations in terms of an input

size n, given a piece of iterative code
3. Able to calculate the time complexity in big O notation for a piece of

iterative code
4. Able to give best/worst case scenarios (order and description of

scenario) for Linear Search and Selection Sort
5. Able to identify a piece of code that is O(logn)
6. Able to analyze the time complexity of binary search and compare its

use over linear search
7. Able to give the complexity of Merge Sort
8. Able to write the code to merge two ordered lists

a="1"
b="2"
swapping
temp=a
a=b
b=temp

import datetime
t = datetime.datetime.now()

import time
start = time.time()
end = time.time()

From Python DS book:
• 6.6 Sorting
• 6.8 Selection sort (not yet about O(n2))
• 6.11 Merge sort (Algorithm only, not required to

learn to code it)
• 3.2 What is algorithm analysis?
• 3.3 Big-O notation
• 6.3.1 Analysis of Sequential Search
• 6.4.1 Analysis of Binary Search
• 6.8 Selection Sort (complexity)
• 6.11 Merge Sort (complexity)

Week 14 Review

https://runestone.academy/runestone/books/published/pythonds/SortSearch/TheMergeSort.html
https://runestone.academy/runestone/books/published/pythonds/SortSearch/TheSelectionSort.html
https://runestone.academy/runestone/books/published/pythonds/SortSearch/TheBinarySearch.html
https://runestone.academy/runestone/books/published/pythonds/SortSearch/TheSequentialSearch.html#analysis-of-sequential-search
https://runestone.academy/runestone/books/published/pythonds/AlgorithmAnalysis/BigONotation.html
https://runestone.academy/runestone/books/published/pythonds/AlgorithmAnalysis/WhatIsAlgorithmAnalysis.html
https://runestone.academy/runestone/books/published/pythonds/SortSearch/TheMergeSort.html
https://runestone.academy/runestone/books/published/pythonds/SortSearch/TheSelectionSort.html
https://runestone.academy/runestone/books/published/pythonds/SortSearch/sorting.html

Dec 2

