
Internet and
Big Data

http://www.youtube.com/watch?v=BC2dRkm8ATU

Complexity

2

Algorithms we know
● Linear Search, Binary Search
● Selection Sort, (will see Merge Sort)

● Algorithms can be ranked in terms of
time (or space) efficiency

● n is # elements we have.
● N is # operations our algorithm does.
● Rate algorithm by a reference

function which closely represents
how N grows as n gets larger.

https://en.wikipedia.org/wiki/Big_O_notation

Big O
Notation
To describe an algorithm’s efficiency

3
http://interactivepython.org/courselib/static/pythonds/AlgorithmAnalysis/BigONotation.html

http://interactivepython.org/courselib/static/pythonds/AlgorithmAnalysis/BigONotation.html

This lesson

4

● Complexity and Big O Notation
● Analysis of brief algorithms
● Analysis of Linear Search
● Analysis of Binary Search
● Analysis of Selection Sort
● Analysis of Merge Sort

Category Reference
Function

Constant 1

Logarithmic log2(n)

Linear n

nlogn nlog2(n)

Quadratic n2

Cubic n3

Exponential an, a>1

How do we calculate time complexity?

5

● Count the number of times a critical operation is executed
● Usually seen in a loop

● Disregard “constants”
● Usually seen as unindented lines, and independent of

input size
● Disregard “lower exponent terms”

(e.g., for 3 n2 + 15n +35; ignore the +15n, ignore the +35).

Let’s see some examples!

6

• Critical operations depending on n?
• addition (lines 5&6)

• What are the constants?
• Lines 1-3

• How many addition/assignments that
matters are executed?

• 2*n (lines 5&6 repeated n times)

• What is the time complexity?
• O(n)

Recall:
● Count the number of times a

critical operation is executed
● Disregard “constants”
● Disregard “lower exponent terms”

1 x = 0
2 y = 10
3 x += 1
4 for i in range(n):
5 x += y
6 y += 1000

Calculating Time Complexity - Example 1

Calculating Time Complexity - Example 2

7

• Critical operations depending on n?
• addition (lines 3, 5)

• What are the constants?
• Line 1

• How many additions that matter are
executed?

• n + n = 2n (line 3 repeated n times, so is line 5)

• What is the time complexity?
• O(n)

Recall:
● Count the number of times a

critical operation is executed
● Disregard “constants”
● Disregard “lower exponent terms”

1 count = 0
2 for i in range(n):
3 count = count + 10
4 for j in range(n):
5 count = count + j

Calculating Time Complexity - Example 3

8

• Critical operations depending on n?
• addition (line 4)

• What are the constants?
• Line 1

• How many additions that matters are
executed?

• n * n = n2 (line 4 repeated n times in j loop,
which repeated n times in i loop)

• What is the time complexity?
• O(n2)

Recall:
● Count the number of times a

critical operation is executed
● Disregard “constants”
● Disregard “lower exponent terms”

1 count = 0
2 for i in range(n):
3 for j in range(n):
4 count = count + 10

9

• Critical operations depending on n?
• addition (lines 4&6)

• What are the constants?
• Line 1

• How many addition/assignments that matters
are executed?

• (n + n) * n = 2n2 (line 4 repeated n times in j loop, so
is line 6, both loops repeated n times in i loop)

• What is the time complexity?
• O(n2) (can omit the coefficient if it is a number)

Recall:
● Count the number of times a

critical operation is executed
● Disregard “constants”
● Disregard “lower exponent terms”

Calculating Time Complexity - Example 4

1 count = 0
2 for i in range(n):
3 for j in range(n):
4 count = count + 10
5 for j in range(n):
6 count += 2

Best case, worst case, average case

10

• When the running time depends on the data (and not a variable
already in the program), we can calculate best case, worst
case, and average case scenarios

• For example, suppose we are performing a Linear Search…
• Best case scenario happens when the first element we check is what

we are looking for (no need to go through the list)
• Worse case scenario happens when the last element we check is what

we are looking for, or it doesn’t exist (have to go through the list to know)
• Average case scenario happens when the element we look for has an

equal chance to be anywhere in the list

Linear search complexity

11

Best case : Returned position i is 0
Worst case : Two poss ible s ituations

Las t item: Returned pos ition i is n-1
Not found: Returned pos ition i = -1

0

n-1

O(n)

O(1)

12

● Critical operations depending on n?
○ addition (lines 4&5)

● What are the constants?
○ Lines 1&2

● How many addition/assignments that
matters are executed?
○ 2*k (lines 4&5 repeated k times)

● What is the time complexity?
○ O(k) ← not the answer yet as it should be a

function of n

1 sum = 0
2 i = n
3 while i >= 1:
4 sum = sum + 1
5 i = i/2

Recall:
• Count the number of times a critical

operation is executed
• Disregard “constants”
• Disregard “lower exponent terms”

Let’s analyze this algorithm
Not as simple

because it’s not n
times

13

• Observation: instead of decreasing 1 in
each iteration, i decreases by half

• Then the question becomes:
“How many times can the while-loop
divide n by 2 until it becomes 1 (as it ends
in the next iteration)?”

• Suppose n is a power of 2 (e.g., 210)
We can do that because if not, n is going to be
between two such numbers (e.g., 26 < 100 < 27)

• Let n = 2k . Then, what is k?

1 sum = 0
2 i = n
3 while i >= 1:
5 sum = sum + 1
6 i = i/2

Recall:
• Count the number of times a critical

operation is executed
• Disregard “constants”
• Disregard “lower exponent terms”

Let’s analyze this algorithm

Divides in
half k times

14

The concept of logarithm

= k

If the number of elements is n, and n = 2k
And we would like to know what k is, how can we solve for k?
We can use logarithm:

Intuition of an O(log n)
algorithm
In each stage the algorithm
processes half of the previous
stage. Which algorithms have
we seen that process half of the
previous stage each time?

15

16

Binary
Search
analysis

Credit: https://stackoverflow.com/questions/2307283/what-does-olog-n-mean-exactly/13093274

The height of this tree is
equal to the number of
comparisons needed to find
the item in the worst case.

Splitting the list
Nodes show #

elements in sub-list.

2 2

22 22 22 22

23 23 23 23 23 23 23 23

The height of the tree is the answer to the following question:
How many times do we divide the problem of size n by 2
until we get down to a problem size of 1?

log2n

One path from the
top to the bottom is
a full search for a
value.

https://stackoverflow.com/questions/2307283/what-does-olog-n-mean-exactly/13093274

Selection
Sort

17ALGORITHM + PROGRAMMING LANGUAGE

A reminder from last time!

18

Selection Sort looks for the smallest element multiple times,
by going through n elements, then n-1 elements, then n-2
elements.

The total number of operations (comparisons) is therefore:

= n + (n-1) + (n-2) + … + 3 + 2 + 1

Selection sort is quadratic, O(n2).
This is true for both the best and

worst case (why?)

Complexity of Selection Sort

= n (n + 1) / 2

= n2 / 2 + n / 2

Now we have analyzed
3 algorithms!
We used Big O Notation to describe
these algorithms' worst case
runtime:
● O(n) Linear search
● O(logn) Binary search
● O(n2) Selection sort

19
http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/parts/guide06

https://en.wikipedia.org/wiki/Big_O_notation

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/parts/guide06

Is sorting worth it?

20

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheBinarySearch.html

Binary search requires the data to be sorted. Sorting can be
expensive, e.g. O(n2)

Even if binary search is O(logn), wouldn’t the exponential cost of
sorting make this approach worse than linear search O(n)?

Think: In what cases would it be worth it to sort, then perform binary
search?

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheBinarySearch.html

What happens when n gets larger?

21

n Ex: Get first
element in list
O(1)

Ex: Linear
search
O(n)

Ex: Selection
sort
O(n2)

Ex: Binary
search
O(log n)

10 1 10 100 3.32
100 1 100 10,000 6.64
1000 1 1000 1,000,000 9.96
10000 1 10000 100,000,000 13.28

input size, e.g. list to search/sort

Always constant

Introducing Merge Sort

22

• Mergesort is much faster than Selection Sort (along with
shellsort, quicksort, etc.)

https://visualgo.net/bn/sorting

How do you merge 2 sorted lists?

Start from the beginning of each list. Pick the smaller item and append
it to the result list, repeat until both lists are empty

23

result

sorted list 1 sorted list 2

8 13 16 22 74 94 99 -3 -1 36 73 80 86

Merge sort

24

● Split the list until there is
one element

● Progressively recombine
neighbouring sorted lists
using the merge function
we defined earlier

Merge sort

25

Mergesort can be implemented
as a recursive algorithm:

• It has a base case: stop when
there is just one item to sort

• It has a recursive case: give itself
a sublist to sort

• It changes the input towards the
base case: the sublist is a smaller
list

26

The function merge() is a non-
recursive helper function that creates
a new sorted list by merging the two

sorted lists (see pg. 6)

mergeSort() itself
is recursive as it
calls itself with a

smaller list

Mergesort – Pseudocode
1 mergeSort(alist):

2 if (alist has 2 or more elements):

3 sortedLeft = mergeSort(left half of alist)

4 sortedRight = mergeSort(right half of alist)

5 result = merge(sortedLeft, sortedRight)

6 else:

7 result = alist # list is already sorted, 1 element only

8 return result

One way to think of it is instead of tracing how the recursion unfolds, focus on the current step:
It recursively calls itself with 2 halves (lines 3&4), and “magically” gets the halves back sorted.
The merge them into one sorted list (line 5)

Complexity of mergesort?
● Height of the tree (just as in binary

search) ⇒ log n
● Merge operation for all the

elements ⇒ n operations

27

Complexity of mergesort?
O(nlogn)
Intuitively, considering various operations:
● Height of the tree (just as in binary search) ⇒ log n
● Merge operation for all the elements ⇒ n operations

Note: Extra space is needed to create the merged lists at
each level. This may be problematic for large n.

28

(n times log n)

Other sorting algorithms do all the operations in place, e.g.,
swapping with only 1 temp variable needed.

Review

29

Give the worst case time complexity for each of the algorithms
below.

● Linear search
● Binary search
● Selection sort
● Merge sort

Options: O(n!), O(1), O(n2),O(n), O(nlogn), O(logn), O(n3)

Review

30

Assume that a problem can be solved with two
different algorithms, and you need to decide
which algorithm to implement based on their
time complexity.

Their time complexities are O(n) and O(nlogn).

Which algorithm would you choose, if you had
a very large dataset?

	Internet and
Big Data
	Complexity
	Big O Notation
	This lesson
	How do we calculate time complexity?
	Calculating Time Complexity - Example 1
	Calculating Time Complexity - Example 2
	Calculating Time Complexity - Example 3

	Calculating Time Complexity - Example 4
	Best case, worst case, average case
	Linear search complexity
	Let’s analyze this algorithm
	Let’s analyze this algorithm
	The concept of logarithm
	Intuition of an O(log n) algorithm
	Binary Search analysis
	Selection �Sort
	Complexity of Selection Sort
	Now we have analyzed 3 algorithms!
	Is sorting worth it?
	What happens when n gets larger?
	Introducing Merge Sort

	How do you merge 2 sorted lists?
	Merge sort
	Merge sort
	Slide Number 26
	Complexity of mergesort?
	Complexity of mergesort?
	Review
	Review

