
Internet and
Big Data



Review questions

2

What were the 2 searches we learned about last week?

What is the requirement to perform a binary search on a list?

A) Recursive and iterative
B) Linear and binary
C) Base case and recursive step
D) Use for and range

A) Data has no negative values
B) Data has no repeating values
C) Data has the value we are looking for
D) Data is sorted



Review
Binary 
Search

3http://interactivepython.org/courselib/static/pythonds/SortSearch/TheBinarySearch.html

How would you do a 
binary search and 
return the index of the 
search term, or -1 if not 
found?

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheBinarySearch.html


A real-life 
example
Let's say you want to sort Pokémon 
cards. You could sort by HP. How 
might you do it?

4



There are many sorting 
methods! And visualisations
on the internet, to help you 
understand the algorithm.
https://visualgo.net/bn/sorting
(choose “8. Selection Sort”)

Pseudocode is also available in the 
link below (pp. 130-131) 

5

http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/parts/guide06

https://visualgo.net/bn/sorting
http://www.cs.sfu.ca/CourseCentral/120/ggbaker/guide/parts/guide06


Swapping pattern 

6PROGRAMMING LANGUAGE 

Let's say we want to swap the 
values at two different spots in a 
list. How would you do it?

We can use a temporary variable 
to swap a and b.

1. temp ← a
2. a ← b
3. b ← temp

a btemp



Swapping pattern 
Let's say we want to swap the 
values at two different spots in a 
list. How would you do it?

We can use a temporary variable 
to swap a and b.

1. temp ← a
2. a ← b
3. b ← temp

a b



Selection Sort

8ALGORITHM + PROGRAMMING LANGUAGE 

● For every element in the list:
○ Find the smallest element in the rest of the list
○ Swap the current element with that smallest element



9ALGORITHM + PROGRAMMING LANGUAGE 

Selection Sort



Selection Sort

10ALGORITHM + PROGRAMMING LANGUAGE 

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheSelectionSort.html

Will it work with words?

Could we sort from the back to front?

How about largest (first) to smallest (last)?

Could we sort (rearrange) letters in a string?

A) Yes
B) No

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheSelectionSort.html


Timing Programs



What time is it?
You may have used the 
time module to sleep() to 
add pauses in your 
chatbot. With the time 
module, you can also find 
out what time it is, given 
in “seconds since the 
epoch”.

12

https://en.wikipedia.org/wiki/Unix_time#Encoding_time_as_a_number
https://docs.python.org/3.0/library/time.html

January 1, 1970

Use time to measure 
how long your program 
took. We will be using 
this in this unit!

time.time()

https://en.wikipedia.org/wiki/Unix_time#Encoding_time_as_a_number
https://docs.python.org/3.0/library/time.html


Timing our algorithms
Let’s generate a big list of numbers and time our different 
algorithms.

13



14

http://www.youtube.com/watch?v=ZZuD6iUe3Pc


Goodness of an algorithm?

15

● #1 Criteria: Correct (i.e., it works. Though sometimes we need 
to compromise and accept an approximate solution)

● #2 Desirable qualities:
● Clear to read code and to debug 
● Code easy to understand
● Good user interface
● Concise code
● Modular (levels of abstraction, use of functions), structured
● Robust (does not crash)
● Easy to maintain and revise



2 Ways to Examine the 
“Goodness” of  an algorithm

16

Time complexity: is time used efficiently?
● The algorithm executes efficiently with a realistic response time 
● The more time it takes to produce the same result, the higher the complexity

Space complexity: is space used efficiently?
● The algorithm uses an optimal (or at least an acceptable amount) of memory
● The more space it needs to produce the same result, the higher the 

complexity

Efficiency is the essential quality to consider for large size problems!



Complexity
The amount of resources (in time, space) 
required to run an algorithm.

17

In this course, we’ll 
focus on time



Measuring time complexity

18

● Generally speaking, we measure the time it takes for the 
algorithm to solve particular problem (with a considerable 
size) 

● However, the time depends on a lot of things, e.g., CPU 
speed, RAM size. So while execution time gives us a good 
idea, it’s not the most accurate measurement 

● A better way is to count the number of operations that get 
carried out (i.e., executed), which is independent of 
hardware variations – we call this notion of time complexity 
the “order of an algorithm”



Order of an algorithm 

19

● Gives a notion of the Time complexity of the 
algorithm 

● This is a theory that is most relevant for 
problems and algorithms involving large 
numbers of data (large size of problems)

Like searching and sorting a 
million songs!



Order of an algorithm 

20

● The Order gives an 
“approximate” measure of an 
algorithm in terms of number of  
“critical operations” that are 
executed.

● “approximate” is in fact very 
precisely defined 
mathematically.

Critical operations can be: 
● additions
● comparisons (if 

statements)
● transfer operations 

(assignments) …



Order and Problem Input Size 

21

● Since order is approximately the number of operations that 
get carried out, the larger the problem input size is, the more 
operations are required

● We can express order (i.e., time complexity) as a function of 
the problem input size, which can be:
● dimensions of lists, 
● the number of values to be added,
● the number of values among which we search 
● the number of values to be sorted…



Order of an algorithm 

22

● An algorithm is rated in terms of some reference function. 
It is said to be in the order (big-O) of some reference 
function:
● O(n), O(n2), O(log n), etc.

● Intuitively, that means that for sufficiently large n, the time 
that the algorithm will take (to execute the critical 
operations) will be proportional to n, n2, log n, etc, where n
is the the problem input size.

E.g. we have a list with n=1,000,000 
elements that we want to sort

We say "Big O of n" or 
"Order n"



Standard reference functions

23

Category Reference 
Function

Constant 1

Logarithmic log2(n)

Linear n

nlogn nlog2(n)

Quadratic n2

Cubic n3

Exponential an, a>1

https://en.wikipedia.org/wiki/Big_O_notation
Number of elements

Number of operations



Order and Problem Input Size 

24

Next we’ll learn how to analyze our search and sort algorithms in 
terms of their order as the number of items to process gets large.



Let’s review some concepts

What is the name of the 
of sorting algorithm we 
learned in this class?

25

Do we need to use 
comparison operators 
when sorting?


	Internet and 
Big Data
	Review questions
	Review Binary Search
	A real-life example
	There are many sorting methods! And visualisations
	Swapping pattern 
	Swapping pattern 


	Selection Sort 
	Selection Sort 
	Selection Sort 
	Timing Programs
	What time is it?
	Timing our algorithms
	Slide Number 14
	Goodness of an algorithm?
	2 Ways to Examine the “Goodness” of  an algorithm
	Complexity
	Measuring time complexity
	Order of an algorithm 
	Order of an algorithm 
	Order and Problem Input Size 
	Order of an algorithm 
	Standard reference functions
	Order and Problem Input Size 
	Let’s review some concepts

