
Graphics and
Computer Vision

Fruitful Recursion

2

Recursion reminders
Three Laws of Recursion:
● A recursive algorithm must have a base case.
● A recursive algorithm must change its state and move

toward the base case.
● A recursive algorithm must call itself, recursively.

Fork this! https://replit.com/@ajlsfu/Fancy-Recursive-Tree

https://replit.com/@ajlsfu/Fancy-Recursive-Tree

Let’s review some concepts

3

def doer(n):

if n == 0:

pass

else:

print(n)

doer(n-1)

def waiter(n):

if n == 0:

pass

else:

waiter(n-1)

print(n)

What does doer(3) print and waiter(3) print?

Let’s review some concepts

4

def doer(n):

if n == 0:

pass

else:

print(n)

doer(n-1)

Are these the same?

def doer(n):

if n > 0:

print(n)

doer(n-1)

5

Recursion reminder
Recall the recursive function we wrote to print numbers on separate lines.
What do you think these functions print?

def print_now(s):

if len(s) > 0:

print(s[0])

print_now(s[1:])

print_now("abcde")

def print_later(s):

if len(s) > 0:

print_later(s[1:])

print(s[0])

print_later("abcde")

Tip! Add print statements
such as “entering function”,
“about to call recursively” to
help trace these algorithms.

Recursion
Recursion + Fruitful Functions

6

7

Fruitful recursion
This week, we’ll go over some classic recursion problems that combine fruitful
functions (that return a value) with recursion.

Parameter type
● Factorial number
● Sum of numbers in a list list
● String reversal string

8

Fruitful recursion: Factorial
Write a recursive function that returns the factorial of a number.

Calculates n! = n*(n-1)*(n-2)*...*1

def factorial(n):

… What is the base case? How can you incorporate a call
to itself with a parameter that moves it closer to the
base case?

9
What should this output?

Fruitful recursion: Factorial
factorial(0) →
factorial(1) →
factorial(2) →

1
1*factorial(0) → 1*1 → 1
2*factorial(1) → 2*1

10

Fruitful recursion: Sum

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofaListofNumbers.html

Task: Find the sum of the elements in the list. How would you do
it iteratively (i.e. with a loop)?

Challenge: Can you write a sum function without using a loop?

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofaListofNumbers.html

11

Fruitful recursion: Sum

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofaListofNumbers.html

1 3 5 7 9numList =

What’s the base case?

Task: Find the sum of the elements in the list.
Challenge: Don’t use for or while!

What’s the subproblem?

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofaListofNumbers.html

13

Let’s code it!

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofaListofNumbers.html

Recursion can be quite
useful when the
function returns
something.

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofaListofNumbers.html

14

Fruitful recursion: Reversing
Given a string, can you write a function that will return the reverse of the string?
E.g. “yellow” → “wolley”

15

Fruitful recursion: Reversing

Another solution

16

Let’s review
How can you identify if a problem is suited to be solved with recursion?

Do all parameters in a recursive function need to be used for controlling the end of
recursion?

What are some classic algorithms that can be solved with fruitful recursion?

	Graphics and �Computer Vision
	Recursion reminders
	Let’s review some concepts
	Let’s review some concepts
	Recursion reminder
	Recursion
	Fruitful recursion
	Fruitful recursion: Factorial
	Fruitful recursion: Factorial
	Fruitful recursion: Sum
	Fruitful recursion: Sum
	Slide Number 12
	Let’s code it!
	Fruitful recursion: Reversing
	Fruitful recursion: Reversing
	Let’s review

