Graphics
- Computer Vision

éaFruitful Recursion

reminders

Three Laws of Recursion:

e A recursive algorithm must have a base case.

e A recursive algorithm must change its state and move
toward the base case.

e A recursive algorithm must call itself, recursively.

Fork this! https.//replit.com/@ajlsfu/Fancy-Recursive-Tree

https://replit.com/@ajlsfu/Fancy-Recursive-Tree

Let's some concepts

def doer (n): def waiter (n):
if n == 0: if n ==
pass pass
else: else:
print (n) walter (n-1)
doer (n-1) print (n)

What does doer(3) print and waiter(3) print?

Let's

def doer(n):
if n ==
pass
else:
print (n)

doer (n-1)

Are these the same?

some concepts

def doer(n):
if n > 0:
print (n)

doer (n-1)

Tip! Add print statements
such as “entering function”,

re m i n de r “about to call recursively” to

help trace these algorithms.

RecaUtherecunﬂvefuncﬁon\We\wmﬂetoFwwwrNNnbemsonsepamﬂeUHEEF\/h___
What do you think these functions print?

def print now(s):
if len(s) > O:
print (s[0])

print now(s[1:])

print now ("abcde")

def print later(s):
if len(s) > O:
print later(s[1l:])
print (s[0])

print later ("abcde")

7

‘f.‘

Recursion + Fruitful Functions

recursion

This week, we'll go over some classic recursion problems that combine fruitful
functions (that return a value) with recursion.

Parameter type
e [actorial number
e Sum of numbersin a list list

e String reversal string

recursion: Factorial

\Xrite a recursive function that returns the factorial of a number.

ol — 1 forn=20
1l nx(n—-1)! forn>0

Calculates n! = n*(n-1)*(n-2)*...*1

def factorial (n):

What is the base case? How can you incorporate a call
to itself with a parameter that moves it closer to the
base case?

recursion: Factorial

factorial (0) — 1
factorial(l) — 1l*factorial(0) - 1*1 - 1
factorial (2) — 2*factorial(l) - 2~*1

19 - def factorial(num):

20 # Base case

21~ if num ==

22 return 1

23~ else:

24 return numkfactorial(num-1)
25

26 print(factorial(4))

27 ~—

What should this output?

recursion: Sum

Task: Find the sum of the elements in the list. How would you do
it iteratively (i.e. with a loop)?

Challenge: Can you write a sum function without using a loop?

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofalistofNumbers.html

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofaListofNumbers.html

recursion: Sum

Task: Find the sum of the elements in the list.
Challenge: Don't use for or while!

J' What's the subproblem?

numList=| 1 | 3 | 5| 7 | 9

listSum(numList) = first(numList) + listSum(rest(numList))

ﬁ What's the base case?

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofalistofNumbers.html

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofaListofNumbers.html

code it!

main.py Recursion can be quite

useful when the
function returns
something.

1 # More on Recursion

2 # Author: Angelica Lim
3 # Date: April 2, 2018
4
5

http://interactivepython.org/runestone/static
/thinkcspy/IntroRecursion
/CalculatingtheSumofaListofNumbers.html

6

7~ def listsum(numList):

8~ if len(numList) ==

9 return numList[@]

10 - else:

11 return numList[@] + listsum(numList[1:])
12

13 print(listsum([1,3,5,7,91))
14

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofalistofNumbers.html

http://interactivepython.org/runestone/static/thinkcspy/IntroRecursion/CalculatingtheSumofaListofNumbers.html

recursion: Reversing

Given a string, can you write a function that will return the reverse of the string?
E.g. "yellow" — “wolley"

recursion: Reversing

W 0 ~ O U b W N =

==
= ®

1
2
3
4
def reverse(st): 5 def reverse(st):
if len(st) == 0: 6 if len(st) == 0:
return st 7 return st
else: 8 else:
return reverse(st[1:]) + st[0] 9 return st[-1] + reverse(st[:-1])
10
print(reverse("abcde")) 1Z‘L print(reverse("abcde"))

Another solution

review

How can you identify if a problem is suited to be solved with recursion?

Do all parameters in a recursive function need to be used for controlling the end of
recursion?

What are some classic algorithms that can be solved with fruitful recursion?

	Graphics and �Computer Vision
	Recursion reminders
	Let’s review some concepts
	Let’s review some concepts
	Recursion reminder
	Recursion
	Fruitful recursion
	Fruitful recursion: Factorial
	Fruitful recursion: Factorial
	Fruitful recursion: Sum
	Fruitful recursion: Sum
	Slide Number 12
	Let’s code it!
	Fruitful recursion: Reversing
	Fruitful recursion: Reversing
	Let’s review

